Synchronization Part 1

CSE 410 - Computer Systems
November 26, 2001

Readings and References

* Reading

> Chapter 7, Operating System Concepts, Silberschatz, Galvin, and
Gagne. Read the following sections: 7.1, 7.2 (not the subsections),
7.3

* Other References

> Chapter 6, Multithreaded Programming with Pthreads, First
edition, Bil Lewis and Daniel J. Berg, Sun Microsystems Press

26-Nov-01 CSE 410 - Synchronization Part 1 2

Too Much Milk
You Your Roommate
3:00 Look infridge; no milk
3:05 Leavefor store
3:10 Arriveat store Look in fridge; no milk
3:15 Buy milk Leavefor store
3:20 Arrive home; put milk away Arrive at store
325 Buy milk
3:30 Arrive home; put milk away
Oh no, Mr. Bill, too much milk!
26-Nov-01 CSE 410 - Synchronization Part 1 3

Modeling the Problem

» Model you and your roommate as threads
» “Looking inthefridge” and “ putting away
milk” are reading/writing a variable
YOU: YOUR ROOMMATE:

/1 look in fridge

if(mlkAmunt == 0) { /1 1ook in fridge

/1 buy milk if(mlkAmount == 0) {
m | KAnmount ++; /'l buy mlk
} m | KAnount ++;
}
26-Nov-01 CSE 410 - Synchronization Part 1 4

Correctness Properties

» Decomposed into safety and liveness
> safety
« the program never does anything bad
> liveness
« the program eventually does something good

 Although easy to state, these properties are
not always easy to meet

26-Nov-01 CSE 410 - Synchronization Part 1 5

Synchronization Definitions

 Synchronization

> coordinated access by more than one thread to
shared state variables

* Mutual Exclusion
> only one thread does a particular thing at a
time. Onethread doing it excludes all others.
* Critical Section

> only one thread executesin acritical section at
once

26-Nov-01 CSE 410 - Synchronization Part 1 6

Locks

* A lock provides mutual exclusion
> Only onethread can hold the lock at atime
> A lock isalso called amutex (for mutual

Too Much Milk: A Solution

YOU: YOUR ROOMMATE:

M I kLock->Acqui re();
if(mlkAmunt == 0){

3 Il buy mlk M I kLock->Acquire();
excl USIOI’]) m | kAnount ++; !
. 1 del
« Thread must acquire the lock before - [
entering a critical section of code M I kLock- >Rel ease(); ----» If(;n‘/l 'SA""“!“}kz 0)¢
. uy m
» Thread releases the lock after it leaves the m | kKAmount ++;
critical section } }
M | kLock- >Rel ease();
26-Nov-01 CSE 410 - Synchronization Part 1 7 26-Nov-01 CSE 410 - Synchronization Part 1 8
Lock Implementation |ssue Disable Interrupts

* A context switch can happen at any time
> very simple acquire/release functions don’'t work
> inthis case, both threads think they set lockinUse

« disable interrupts to prevent a context switch
> simple but imperfect solution

. Lock: : Acquire() { Lock: : Rel ease() {
Lock: : Rel easg() { . di sable interrupts; enabl e interrupts;
| ockl nUse = fal se; } }
}
Lock: : Acquire() { Lock: : Acquire() {
whi I e(IocklnUse) {} whi | e(1 ocklnUse) {} » Kernel can't get control when interrupts disabled
ockintse = true; = lockinlse = true; + Critical sections may be lon
> turning off interrupts for along time is bad
* turning off interruptsis difficult and costly in
multiprocessor systems
26-Nov-01 CSE 410 - Synchronization Part 1 9 26-Nov-01 CSE 410 - Synchronization Part 1 10
Disable Interrupts with flag Atomic Operations

« only disable interrupts when updating alock flag

initialize value = FREE;

Lock: : Acquire() { Lock: : Rel ease() {
disable interrupts; di sable interrupts;
whi | e(val ue ! = FREE){ val ue = FREE;

enabl e interrupts; enabl e interrupts;
di sabl e interrupts; }

val ue = BUSY;
enable interrupts

26-Nov-01 CSE 410 - Synchronization Part 1 11

» An atomic operation is an operation that
cannot be interrupted

* On amultiprocessor disabling interrupts
doesn’t work well

» Modern processors provide atomic read-
modify-write instruction or equivalent

* Theseinstructions allow locks to be
implemented on a multiprocessor

26-Nov-01 CSE 410 - Synchronization Part 1 12

Examples of Atomic Instructions

e Test and set (many architectures)

> setsamemory location to 1 and returns the previous vaue

> if resultis 1, lock was aready taken, keep trying

> if result is 0, you are the one who set it so you’ ve got the lock
« Exchange (x86)

> swaps value between register and memory

e Compare & swap (68000)
read | ocation val ue
if location value equal s conparison val ue
store update value, set flag true
el se
set flag fal se

26-Nov-01 CSE 410 - Synchronization Part 1 13

Quasi-atomic for load/store | SA

* Remember our MIPS pipeline

> only one memory stage per instruction

> thus, can’t do atomic “read, modify, write” directly
» Load linked and store conditional

> read valuein oneinstruction (LL—Ioad linked) and
remember where the value came from

> do some operation on the value

> when store occurs, check if value has been modified in
the meantime (SC—store conditional)

> if not modified, store new value and return “ success’

> if modified, return “failure”
26-Nov-01 CSE 410 - Synchronization Part 1 14

Locks with Test and Set

Lock: : Rel ease() {
val ue = 0;

}

Lock: : Acquire() {
whi | e(Test AndSet (val ue)) {}
}

* Thisworks, but take a careful look at the
whileloop ... when does it exit?

26-Nov-01 CSE 410 - Synchronization Part 1 15

Busy Waiting

» CPU cycles are consumed while the thread
iswaiting for value to become O

» Thisisvery inefficient
* Big problem if the thread that is waiting has

a higher priority than the thread that holds
the lock

26-Nov-01 CSE 410 - Synchronization Part 1 16

L ocks with Minimal Busy Waiting

» Useaqueue for threads waiting on the lock
A guard variable provides mutual exclusion

Lock: : Acquire() { Lock: : Rel ease() {
whi | e(Test AndSet (guard)){} whi | e(Test AndSet (guard) {}
if(value '= FREE) { i f(anyone on wait queue){
Put self on wait queue; nove thread fromwait
guard = 0 and switch(); queue to ready queue;

} else { } else {
val ue = BUSY; val ue = FREE;
guard = 0; }
} guard = O;
} }

26-Nov-01 CSE 410 - Synchronization Part 1 17

Synchronization Summary

» Threads often work independently
» But sometimes threads need to access shared data

» Access to shared data must be mutually exclusive
to ensure safety and liveness

» Locksareagood way to provide mutual exclusion

» Next time we'll see other synchronization
primitives—semaphores and condition variables

26-Nov-01 CSE 410 - Synchronization Part 1 18

