
Synchronization Part 1

CSE 410 - Computer Systems

November 26, 2001

26-Nov-01 CSE 410 - Synchronization Part 1 2

Readings and References

• Reading
› Chapter 7, Operating System Concepts, Silberschatz, Galvin, and

Gagne. Read the following sections: 7.1, 7.2 (not the subsections),
7.3

• Other References
› Chapter 6, Multithreaded Programming with Pthreads, First

edition, Bil Lewis and Daniel J. Berg, Sun Microsystems Press

26-Nov-01 CSE 410 - Synchronization Part 1 3

Too Much Milk

Arrive home; put milk away

Oh no, Mr. Bill, too much milk!

3:30

Buy milk3:25

Arrive at storeArrive home; put milk away3:20

Leave for storeBuy milk3:15

Look in fridge; no milkArrive at store3:10

Leave for store3:05

Look in fridge; no milk3:00

Your RoommateYou

26-Nov-01 CSE 410 - Synchronization Part 1 4

Modeling the Problem

• Model you and your roommate as threads

• “Looking in the fridge” and “putting away
milk” are reading/writing a variable

YOU:

// look in fridge
if(milkAmount == 0) {
 // buy milk
 milkAmount++;
}

YOUR ROOMMATE:

// look in fridge
if(milkAmount == 0) {
 // buy milk
 milkAmount++;
}

26-Nov-01 CSE 410 - Synchronization Part 1 5

Correctness Properties

• Decomposed into safety and liveness
› safety

• the program never does anything bad

› liveness
• the program eventually does something good

• Although easy to state, these properties are
not always easy to meet

26-Nov-01 CSE 410 - Synchronization Part 1 6

Synchronization Definitions

• Synchronization
› coordinated access by more than one thread to

shared state variables

• Mutual Exclusion
› only one thread does a particular thing at a

time. One thread doing it excludes all others.

• Critical Section
› only one thread executes in a critical section at

once

26-Nov-01 CSE 410 - Synchronization Part 1 7

Locks

• A lock provides mutual exclusion
› Only one thread can hold the lock at a time
› A lock is also called a mutex (for mutual

exclusion)

• Thread must acquire the lock before
entering a critical section of code

• Thread releases the lock after it leaves the
critical section

26-Nov-01 CSE 410 - Synchronization Part 1 8

Too Much Milk: A Solution

YOU:

MilkLock->Acquire();
if(milkAmount == 0){
 // buy milk
 milkAmount++;
 }
}
MilkLock->Release();

YOUR ROOMMATE:

MilkLock->Acquire();

 delay

if(milkAmount == 0){
 // buy milk
 milkAmount++;
 }
}
MilkLock->Release();

26-Nov-01 CSE 410 - Synchronization Part 1 9

Lock Implementation Issue
• A context switch can happen at any time

› very simple acquire/release functions don’t work
› in this case, both threads think they set lockInUse

Lock::Acquire() {
 while(lockInUse) {}
 lockInUse = true;
}

Lock::Release() {
 lockInUse = false;
}

Lock::Acquire() {
 while(lockInUse) {}
 lockInUse = true;
}

26-Nov-01 CSE 410 - Synchronization Part 1 10

Disable Interrupts

• disable interrupts to prevent a context switch
› simple but imperfect solution

Lock::Acquire() {
 disable interrupts;
}

Lock::Release() {
 enable interrupts;
}

• Kernel can’t get control when interrupts disabled
• Critical sections may be long

› turning off interrupts for a long time is bad

• turning off interrupts is difficult and costly in
multiprocessor systems

26-Nov-01 CSE 410 - Synchronization Part 1 11

Disable Interrupts with flag

• only disable interrupts when updating a lock flag

Lock::Release() {
 disable interrupts;
 value = FREE;
 enable interrupts;
}

initialize value = FREE;

Lock::Acquire() {
 disable interrupts;
 while(value != FREE){
 enable interrupts;
 disable interrupts;
 }
 value = BUSY;
 enable interrupts
}

26-Nov-01 CSE 410 - Synchronization Part 1 12

Atomic Operations

• An atomic operation is an operation that
cannot be interrupted

• On a multiprocessor disabling interrupts
doesn’t work well

• Modern processors provide atomic read-
modify-write instruction or equivalent

• These instructions allow locks to be
implemented on a multiprocessor

26-Nov-01 CSE 410 - Synchronization Part 1 13

Examples of Atomic Instructions

• Test and set (many architectures)
› sets a memory location to 1 and returns the previous value
› if result is 1, lock was already taken, keep trying
› if result is 0, you are the one who set it so you’ve got the lock

• Exchange (x86)
› swaps value between register and memory

• Compare & swap (68000)
read location value

if location value equals comparison value

store update value, set flag true

else

set flag false

26-Nov-01 CSE 410 - Synchronization Part 1 14

Quasi-atomic for load/store ISA

• Remember our MIPS pipeline
› only one memory stage per instruction
› thus, can’t do atomic “read, modify, write” directly

• Load linked and store conditional
› read value in one instruction (LL—load linked) and

remember where the value came from
› do some operation on the value
› when store occurs, check if value has been modified in

the meantime (SC—store conditional)
› if not modified, store new value and return “success”
› if modified, return “failure”

26-Nov-01 CSE 410 - Synchronization Part 1 15

Locks with Test and Set

• This works, but take a careful look at the
while loop ... when does it exit?

Lock::Release() {
 value = 0;
}

Lock::Acquire() {
 while(TestAndSet(value)) {}
}

26-Nov-01 CSE 410 - Synchronization Part 1 16

Busy Waiting

• CPU cycles are consumed while the thread
is waiting for value to become 0

• This is very inefficient

• Big problem if the thread that is waiting has
a higher priority than the thread that holds
the lock

26-Nov-01 CSE 410 - Synchronization Part 1 17

Locks with Minimal Busy Waiting

• Use a queue for threads waiting on the lock
• A guard variable provides mutual exclusion

Lock::Release() {
 while(TestAndSet(guard){}
 if(anyone on wait queue){
 move thread from wait
 queue to ready queue;
 } else {
 value = FREE;
 }
 guard = 0;
}

Lock::Acquire() {
 while(TestAndSet(guard)){}
 if(value != FREE) {
 Put self on wait queue;
 guard = 0 and switch();
 } else {
 value = BUSY;
 guard = 0;
 }
}

26-Nov-01 CSE 410 - Synchronization Part 1 18

Synchronization Summary

• Threads often work independently
• But sometimes threads need to access shared data
• Access to shared data must be mutually exclusive

to ensure safety and liveness
• Locks are a good way to provide mutual exclusion
• Next time we’ll see other synchronization

primitives—semaphores and condition variables

