Scheduling (Win 2K)

CSE 410 - Computer Systems November 21, 2001

Dispatcher "database"

Readings and References

• Reading

 Chapter 6, Section 6.7.2, Operating System Concepts, Silberschatz, Galvin, and Gagne

Other References

- Chapter 6, Section "Thread Scheduling", *Inside Microsoft Windows 2000*, Third Edition, Solomon and Russinovich. This book is the source of most of today's lecture.
- > Chapter 6, Performance Monitoring, Windows 2000 Professional Resource Kit, Microsoft

21-Nov-01 CS

CSE 410 - Scheduling (W2K)

2

Thread State Transitions

21-Nov-01 CSE 410 - Scheduling (W2K)

Ready, Running, Waiting

- Ready
 - > ready to run if there is a processor available
 - > there is a ready queue for each priority level
- Running
 - > has been switched to and is running
- Waiting
 - > waiting on an event (synchronize, I/O, etc)

21-Nov-01 CSE 410 - Scheduling (W2K)

Other States

- Initialized
 - > On its way in the door
- Terminated
 - > On its way out the door to history or recycle
- Standby
 - > Ready and selected to run next
- Transition

5

> Ready, but important parts are paged out

21-Nov-01 CSE 410 - Scheduling (W2K)

6

Setting Thread Priorities

- Base priority
 - > normally inherited from process default
 - > can be explicitly set
- Current priority
 - > starts out same as base
 - > real time never changes
 - > dynamic is boosted when appropriate for responsiveness

21-Nov-01 CSE 410 - Scheduling (W2K)

Priority boosting

- After I/O completion or event wait
 - > you've waited for this data, now use it quick
- User response
 - > Foreground thread after a wait or window thread wakeup for window event
- CPU starvation
 - > found an aging thread on the ready queues
- The boost decays quickly over time

21-Nov-01 CSE 410 - Scheduling (W2K)

10

Quantum

- Thread Quantum is
 - indicator of the amount of time a thread can run before W2K checks whether another thread at the same priority should get to run
- Each thread has a current quantum value
 - a small integer that is decremented under various circumstances
 - > not an actual length of time, just a number

21-Nov-01 CSE 410 - Scheduling (W2K) 12

Quantum value

- Thread quantum is initialized when thread is put on the ready queue
 - > initial value of 6 on Windows 2K Professional
 - > initial value of 36 on Windows 2K Server
- Quantum of running thread is decremented by 3 after system clock interrupt
 - > so a W2K Pro thread can run for 2 clock intervals
 - > a W2K Server thread can run for 12 clock intervals

21-Nov-01 CSE 410 - Scheduling (W2K) 13

Quantum changes

- Quantum is decremented
 - > reduced quantum => less time remaining before thread has exhausted its time slice
 - > reduced by 3 when the clock ticks
 - > by 1 when dynamic thread executes a wait
- Quantum initial value may be boosted
 - > "Optimize performance for applications"
 - => boost initial quantum for foreground threads

Quantum is reset to initial value

- a thread moves to ready queue after quantum end
 - > in other words, a thread is given another chunk of time to use after it has exhausted the first chunk
- a real-time thread is preempted and moves from running to ready or it moves from running to wait
 - the presumption is that you are doing a good job of explicitly managing priorities and access to the CPU when you are running real-time threads

21-Nov-01 CSE 410 - Scheduling (W2K) 14

Scheduling Scenarios

- Voluntary switch
 - > thread calls a wait function of some sort
- Preemption
 - > higher priority thread is ready to run
- Quantum end
 - > the running thread exhausts its quantum

21-Nov-01 CSE 410 - Scheduling (W2K) 15 21-Nov-01 CSE 410 - Scheduling (W2K) 16

Voluntary Switch

Quantum End

CSE 410 - Scheduling (W2K)

19

21-Nov-01

Preemption

