Threads

CSE 410 - Computer Systems
November 16, 2001

Readings and References

* Reading

> Chapter 5, Operating System Concepts, Silberschatz, Galvin, and
Gagne

e Other References

> Inside Microsoft Windows 2000, Third Edition, Solomon and
Russinovich

> Pthreads Programming, Nichols, Buttlar and Farrell

16-Nov-01 CSE 410 - Threads

A Process

* A complete process includes numerous things
> address space (all the code and data pages)
> OS resources and accounting information

> a“thread of control”, which defines where the
process is currently executing
o the Program Counter
o CPU registers

16-Nov-01 CSE 410 - Threads 3

Processes are heavywe ght objects

e Creating anew processis costly
> lots of data must be allocated and initialized
> operating system control data structures
> memory allocation for the process
e Communicating between processes is costly
> most communication goes through the OS
> need a context switch for each process

16-Nov-01 CSE 410 - Threads 4

Parallelism using Processes

 Why build a parallel program?
> responsiveness to user
> web server handling simultaneous web requests
> execute faster on a multiprocessor

e One approach using heavyweight processes
> Create several processes to execute in parallel

> Map each process to the same address space
> specify starting address and initial parameters

16-Nov-01 CSE 410 - Threads 5

Parallel processes are expensive

 There’'salot of cost
> creating these processes
> coordinating them

 There'salot of duplication
> Same program code, protection, etc...

It may betimefor alittle refinement and
complexity ...

16-Nov-01 CSE 410 - Threads

What 1s fundamental in a process?

* \What do our parallel processes share?

> Same code and data (address space)

> Same privileges

> They share amost everything in the process
e What don’t they share?

> Program Counter, registers, and stack

o Separate the ideaof “process’ from the idea
of a“thread of control” (PC, SP, registers)

16-Nov-01 CSE 410 - Threads 7

Threads are “ Lightwelght Processes’

* Most operating systems now support two entities

> the process, which defines the address space and
general process attributes

> the thread, which defines one or more execution paths
within a process

e Threads are the unit of scheduling

 Processes arethe “contaners’ in which threads
execute

16-Nov-01 CSE 410 - Threads 8

Multi-threaded design benefits

e Separating execution path from address space

simplifies design of parallel applications
o Some benefits of threaded designs

> iImproved responsiveness to user actions

handling concurrent events (e.g., web requests)
simplified program structure (code, data)
more efficient and so less iImpact on system
map easlly to multi-processor systems

16-Nov-01 CSE 410 - Threads 9

\%

\%

A%

A%

One thread Three threads

st ack stack 1
¥ «—$sp $sp, —» ¥
stack 2
$Sp2 —> *
stack 3
$Sp3 —P v
A A
heap heap
PC,
code | pC PC, —» code | PC,

16-Nov-01 CSE 410 - Threads

Cookbook Analogy

« Think of abusy kitchen over the holiday
> 3 cooks and 1 cookbook

* Each cook maintains a pointer to where they
are In the cookbook (the Program Counter)

e Two cooks could both be making the same
thing (threads running the same procedure)

* The cooks must coordinate access to the
Kitchen appliances (resource access control)

16-Nov-01 CSE 410 - Threads 11

|mplementation

A thread is bound to the process that
provides its address space

» Each process has one or more threads

 How are threads actually implemented?

> In the kernel and user mode libraries combined
> In user mode libraries aone

16-Nov-01 CSE 410 - Threads 12

Kernal Threads

* The operating system knows about and
manages the threads in every program

* Thread operations (create, yield, ...) all
require kernel involvement

 Maor benefit isthat threads in a process are
scheduled independently

> one blocked thread does not block the others
> threads in a process can run on different CPUs

16-Nov-01 CSE 410 - Threads 13

Kernel Thread Performance

» Kernel threads have performance issues

* Even though threads avoid process overhead,
operations on kernel threads are still slow
> athread operation requires akernel call

> kernel threads may be overly general, in order to
support needs of different users, languages, etc.

> the kernel doesn'’t trust the user, so there must be
lots of checking on kernel calls

16-Nov-01 CSE 410 - Threads

14

User Threads

* To make thread operations faster, they can be
Implemented at the user level

> Each thread is managed by the run-time system
> user-mode libraries are linked with your program
e Each thread isrepresented ssmply by a PC,
registers, stack and a control block, managed
In the user’ s address space

16-Nov-01 CSE 410 - Threads 15

User Thread Performance

« All activities happen in user address space so
thread operations can be faster

e But OS scheduling takes place at process |evel
> block entire processif asingle thread is /O blocked
> may run aprocess that isjust running an idle thread

o Win2K provides“fibers’ as user mode threads

> application can schedule its own “lightweight
threads’ 1n user mode code

16-Nov-01 CSE 410 - Threads 16

Simplified W2K Process Data

Process Thread
— environment [« environment
block block
A

process address space

system address space

_> .
Process Win32 process block

block —» Handle table

Thread
block

Copied fromlnside Windows 2000
16-Nov-01 CSE 410 - Threads 17

Simplified Thread Interface

e t =thread creatg(), thread start(t)

> create anew thread of control and start it
e thread yield()

> voluntarily give up the processor for awhile
o thread exit()

> terminate the calling thread

16-Nov-01 CSE 410 - Threads 18

Win2K Thread/Fiber API

 Thread Functions

> AttachThreadl nput CreateRenoteThread CreateThread Exit Thread
Get Current Thread Get Current Threadl d Get Exi t CodeThr ead
Get ThreadPriority Get ThreadPriorityBoost Get ThreadTi nes
ResuneThr ead Set ThreadAffi ni tyMask Set Threadl deal Processor
Set ThreadPriority Set ThreadPriorityBoost Sl eep Sl eepEx
SuspendThread SwitchToThread Term nateThread ThreadProc Tl sAll oc
Tl sFree Tl sGet Val ue Tl sSet Val ue Wait Forlnputldle

e Fiber Functions

> Convert Thr eadToFi ber Creat eFi ber Del et eFi ber Fi ber Proc
Get Current Fi ber Get Fi berData Sw t chToFi ber

16-Nov-01 CSE 410 - Threads 19

