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Readings and References

• Reading
› Chapter 5, Operating System Concepts, Silberschatz, Galvin, and

Gagne

• Other References
› Inside Microsoft Windows 2000, Third Edition, Solomon and

Russinovich

› Pthreads Programming, Nichols, Buttlar and Farrell
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A Process

• A complete process includes numerous things
› address space (all the code and data pages)

› OS resources and accounting information

› a “thread of control”, which defines where the
process is currently executing

• the Program Counter

• CPU registers
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Processes are heavyweight objects

• Creating a new process is costly
› lots of data must be allocated and initialized

› operating system control data structures

› memory allocation for the process

• Communicating between processes is costly
› most communication goes through the OS

› need a context switch for each process
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Parallelism using Processes

• Why build a parallel program?
› responsiveness to user

› web server handling simultaneous web requests

› execute faster on a multiprocessor

• One approach using heavyweight processes
› create several processes to execute in parallel

› map each process to the same address space

› specify starting address and initial parameters
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Parallel processes are expensive

• There’s a lot of cost
› creating these processes

› coordinating them

• There’s a lot of duplication
› same program code, protection, etc…

• It may be time for a little refinement and
complexity ...
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What is fundamental in a process?

• What do our parallel processes share?
› Same code and data (address space)

› Same privileges

› They share almost everything in the process

• What don’t they share?
› Program Counter, registers, and stack

• Separate the idea of “process” from the idea
of a “thread of control” (PC, SP, registers)
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Threads are “Lightweight Processes”

• Most operating systems now support two entities
› the process, which defines the address space and

general process attributes

› the thread, which defines one or more execution paths
within a process

• Threads are the unit of scheduling

• Processes are the “containers” in which threads
execute
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Multi-threaded design benefits

• Separating execution path from address space
simplifies design of parallel applications

• Some benefits of threaded designs
› improved responsiveness to user actions

› handling concurrent events (e.g., web requests)

› simplified program structure (code, data)

› more efficient and so less impact on system

› map easily to multi-processor systems
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Cookbook Analogy

• Think of a busy kitchen over the holiday
› 3 cooks and 1 cookbook

• Each cook maintains a pointer to where they
are in the cookbook (the Program Counter)

• Two cooks could both be making the same
thing (threads running the same procedure)

• The cooks must coordinate access to the
kitchen appliances (resource access control)
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Implementation

• A thread is bound to the process that
provides its address space

• Each process has one or more threads

• How are threads actually implemented?
› In the kernel and user mode libraries combined

› In user mode libraries alone
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Kernel Threads

• The operating system knows about and
manages the threads in every program

• Thread operations (create, yield, ...) all
require kernel involvement

• Major benefit is that threads in a process are
scheduled independently
› one blocked thread does not block the others

› threads in a process can run on different CPUs
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Kernel Thread Performance

• Kernel threads have performance issues

• Even though threads avoid process overhead,
operations on kernel threads are still slow
› a thread operation requires a kernel call

› kernel threads may be overly general, in order to
support needs of different users, languages, etc.

› the kernel doesn’t trust the user, so there must be
lots of checking on kernel calls
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User Threads

• To make thread operations faster, they can be
implemented at the user level
› Each thread is managed by the run-time system

› user-mode libraries are linked with your program

• Each thread is represented simply by a PC,
registers, stack and a control block, managed
in the user’s address space
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User Thread Performance

• All activities happen in user address space so
thread operations can be faster

• But OS scheduling takes place at process level
› block entire process if a single thread is I/O blocked

› may run a process that is just running an idle thread

• Win2K provides “fibers” as user mode threads
› application can schedule its own “lightweight

threads” in user mode code
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Simplified W2K Process Data

Process
environment

block

Thread
environment

block

Process
block

Win32 process block

Handle table

Thread
block

process address space

system address space

Copied fromInside Windows 2000
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Simplified Thread Interface

• t = thread_create(), thread_start(t)
› create a new thread of control and start it

• thread_yield()
› voluntarily give up the processor for awhile

• thread_exit()
› terminate the calling thread
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Win2K Thread/Fiber API

• Thread Functions
› AttachThreadInput CreateRemoteThread CreateThread ExitThread

GetCurrentThread GetCurrentThreadId GetExitCodeThread
GetThreadPriority GetThreadPriorityBoost GetThreadTimes
ResumeThread SetThreadAffinityMask SetThreadIdealProcessor
SetThreadPriority SetThreadPriorityBoost Sleep SleepEx
SuspendThread SwitchToThread TerminateThread ThreadProc TlsAlloc
TlsFree TlsGetValue TlsSetValue WaitForInputIdle

• Fiber Functions
› ConvertThreadToFiber CreateFiber DeleteFiber FiberProc

GetCurrentFiber GetFiberData SwitchToFiber


