
Threads

CSE 410 - Computer Systems

November 16, 2001

16-Nov-01 CSE 410 - Threads 2

Readings and References

• Reading
› Chapter 5, Operating System Concepts, Silberschatz, Galvin, and

Gagne

• Other References
› Inside Microsoft Windows 2000, Third Edition, Solomon and

Russinovich

› Pthreads Programming, Nichols, Buttlar and Farrell

16-Nov-01 CSE 410 - Threads 3

A Process

• A complete process includes numerous things
› address space (all the code and data pages)

› OS resources and accounting information

› a “thread of control”, which defines where the
process is currently executing

• the Program Counter

• CPU registers

16-Nov-01 CSE 410 - Threads 4

Processes are heavyweight objects

• Creating a new process is costly
› lots of data must be allocated and initialized

› operating system control data structures

› memory allocation for the process

• Communicating between processes is costly
› most communication goes through the OS

› need a context switch for each process

16-Nov-01 CSE 410 - Threads 5

Parallelism using Processes

• Why build a parallel program?
› responsiveness to user

› web server handling simultaneous web requests

› execute faster on a multiprocessor

• One approach using heavyweight processes
› create several processes to execute in parallel

› map each process to the same address space

› specify starting address and initial parameters

16-Nov-01 CSE 410 - Threads 6

Parallel processes are expensive

• There’s a lot of cost
› creating these processes

› coordinating them

• There’s a lot of duplication
› same program code, protection, etc…

• It may be time for a little refinement and
complexity ...

16-Nov-01 CSE 410 - Threads 7

What is fundamental in a process?

• What do our parallel processes share?
› Same code and data (address space)

› Same privileges

› They share almost everything in the process

• What don’t they share?
› Program Counter, registers, and stack

• Separate the idea of “process” from the idea
of a “thread of control” (PC, SP, registers)

16-Nov-01 CSE 410 - Threads 8

Threads are “Lightweight Processes”

• Most operating systems now support two entities
› the process, which defines the address space and

general process attributes

› the thread, which defines one or more execution paths
within a process

• Threads are the unit of scheduling

• Processes are the “containers” in which threads
execute

16-Nov-01 CSE 410 - Threads 9

Multi-threaded design benefits

• Separating execution path from address space
simplifies design of parallel applications

• Some benefits of threaded designs
› improved responsiveness to user actions

› handling concurrent events (e.g., web requests)

› simplified program structure (code, data)

› more efficient and so less impact on system

› map easily to multi-processor systems

16-Nov-01 CSE 410 - Threads 10

One thread Three threads

stack

heap

code

stack 1

heap

code

stack 2

stack 3

$sp

PC

$sp1

$sp2

$sp3

PC1
PC2

PC3

16-Nov-01 CSE 410 - Threads 11

Cookbook Analogy

• Think of a busy kitchen over the holiday
› 3 cooks and 1 cookbook

• Each cook maintains a pointer to where they
are in the cookbook (the Program Counter)

• Two cooks could both be making the same
thing (threads running the same procedure)

• The cooks must coordinate access to the
kitchen appliances (resource access control)

16-Nov-01 CSE 410 - Threads 12

Implementation

• A thread is bound to the process that
provides its address space

• Each process has one or more threads

• How are threads actually implemented?
› In the kernel and user mode libraries combined

› In user mode libraries alone

16-Nov-01 CSE 410 - Threads 13

Kernel Threads

• The operating system knows about and
manages the threads in every program

• Thread operations (create, yield, ...) all
require kernel involvement

• Major benefit is that threads in a process are
scheduled independently
› one blocked thread does not block the others

› threads in a process can run on different CPUs

16-Nov-01 CSE 410 - Threads 14

Kernel Thread Performance

• Kernel threads have performance issues

• Even though threads avoid process overhead,
operations on kernel threads are still slow
› a thread operation requires a kernel call

› kernel threads may be overly general, in order to
support needs of different users, languages, etc.

› the kernel doesn’t trust the user, so there must be
lots of checking on kernel calls

16-Nov-01 CSE 410 - Threads 15

User Threads

• To make thread operations faster, they can be
implemented at the user level
› Each thread is managed by the run-time system

› user-mode libraries are linked with your program

• Each thread is represented simply by a PC,
registers, stack and a control block, managed
in the user’s address space

16-Nov-01 CSE 410 - Threads 16

User Thread Performance

• All activities happen in user address space so
thread operations can be faster

• But OS scheduling takes place at process level
› block entire process if a single thread is I/O blocked

› may run a process that is just running an idle thread

• Win2K provides “fibers” as user mode threads
› application can schedule its own “lightweight

threads” in user mode code

16-Nov-01 CSE 410 - Threads 17

Simplified W2K Process Data

Process
environment

block

Thread
environment

block

Process
block

Win32 process block

Handle table

Thread
block

process address space

system address space

Copied fromInside Windows 2000

16-Nov-01 CSE 410 - Threads 18

Simplified Thread Interface

• t = thread_create(), thread_start(t)
› create a new thread of control and start it

• thread_yield()
› voluntarily give up the processor for awhile

• thread_exit()
› terminate the calling thread

16-Nov-01 CSE 410 - Threads 19

Win2K Thread/Fiber API

• Thread Functions
› AttachThreadInput CreateRemoteThread CreateThread ExitThread

GetCurrentThread GetCurrentThreadId GetExitCodeThread
GetThreadPriority GetThreadPriorityBoost GetThreadTimes
ResumeThread SetThreadAffinityMask SetThreadIdealProcessor
SetThreadPriority SetThreadPriorityBoost Sleep SleepEx
SuspendThread SwitchToThread TerminateThread ThreadProc TlsAlloc
TlsFree TlsGetValue TlsSetValue WaitForInputIdle

• Fiber Functions
› ConvertThreadToFiber CreateFiber DeleteFiber FiberProc

GetCurrentFiber GetFiberData SwitchToFiber

