Input / Output Buses

CSE 410 - Computer Systems October 31, 2001

Readings and References

- Reading
 - Sections 8.4, 8.5, Computer Organization & Design, Patterson and Hennessy

• Other References

A typical organization

Constraints

- Two primary design points that must be met
- High speed
 - processor to memory
- Flexibility
 - many types of I/O devices with widely varying characteristics
 - characteristics of future devices are unknown at design time

Designs

- The speed and flexibility constraints lead to designs which are
 - designed for speed
 - processor-memory bus
 - designed for flexibility
 - I/O bus
 - designed for both
 - backplane bus

Speed - Synchronous Bus

- For highest speed, all devices are designed to work together at the same high rate
- Synchronous buses have a clock signal that all devices on the bus are aware of
- Protocol for accessing the bus is relatively simple
 - control signals at specified clock cycles
 - data at specified clock cycles

Synchronous Issues

- Runs fast
- but
 - all attached devices must be designed for this particular (probably proprietary) bus
 - must be short so that signals can propagate across the whole bus
 - fast today is slow tomorrow

Flexibility - Asynchronous Bus

- Devices access the bus by handshaking to determine who can go next
- No single clock
 - transactions are defined by control signal transitions
- Can accommodate a wide variety of device speeds and device types

Asynchronous Issues

- Flexible
- but
 - the handshake adds overhead to each transfer
 - special cases pollute the protocol as it is extended to provide higher speed capabilities
 - extreme network effect: once a bus is popular,
 it lives long past its expected lifetime because
 there are so many devices that use it

Bus Bandwidth

- Width of the bus
 - number of data lines can be increased to transfer more bits of data in parallel
- Multiplexing
 - data lines and control lines can be separated to allow overlapped handshake and data transfer
- Multi-word transfers
 - block transfers move more data per handshake

Controlling bus access

- With multiple devices on the bus, something must control access
- Bus Master
 - device that is allowed to initiate transfers
- Single bus master
 - simple, because no contention
 - potential bottleneck, because one device is busy for every single transfer on the bus

Multiple Masters and Arbitration

- Let several devices act as bus masters
- Must decide who is in control for any particular transaction
- Arbitration
 - daisy chain serial decision
 - centralized parallel one decider
 - distributed parallel many deciders
 - distributed with collision detection