Virtual Memory

CSE 410 - Computer Systems
October 26, 2001

Readings and References

* Reading

— Sections 7.4, 7.5, Computer Organization & Design, Patterson and
Hennessy

* Other References
— Chapter 4, Cachesfor MIPS, See MIPS Run, D. Sweetman

26-Oct-2001 CSE 410 - Virtual Memory 2

L ayout of program memory

7FFF FFEE

reserved (4KB)

7FFF EFFF

1001 0000

stack (grows down)

v

~1792 MB

?

heap (grows up)

1000 FFFF
1000 0000

gl obal data (64 KB)

OFFF FFFF

0040 0000

program (252 MB)

003F FFFF
0000 0000

reserved (4 MB)

26-Oct-2001

CSE 410 - Virtual Memory

Not to
Scalel

Program Memory Addresses

* Program addresses are fixed at the time the
source file is compiled and linked

o Small, smple systems can use program
addresses as the physical address in memory

* Modern systems usually much more complex
— program address space very large
— other programs running at the same time
— operating system isin memory too

26-Oct-2001 CSE 410 - Virtual Memory 4

Direct Physical Addressing

stack

heap

program

26-Oct-2001

physica
addresses

program E
addresses >
:

L

> »
|

|

|

|

|

|

|

|

CSE 410 - Virtual Memory

physical

memory

Physical Addressing

e Address generated by the program is the same asthe
address of the actual memory location

o Simple approach, but lots of problems
— Only one process can easily be in memory at atime

— Thereis no way to protect the memory that the process
Isn't supposed to change (ie, the OS or other processes)

— A process can only use as much memory asis physically
In the computer

— A process occupies all the memory in its address space,
even if most of that space is never used
» 2 GB for the program and 2 GB for the system kernel

26-Oct-2001 CSE 410 - Virtual Memory 6

stack

heap

program

stack

heap

program

stack

heap

program

26-Oct-2001

Memory Mapping

program
addresses

i

>

>

>

memory
mapping

physica
addresses

physical

memory

YYVVVVVYVVVYVVYYYVYY

CSE 410 - Virtual Memory

:

Virtual Addresses

e The program addresses are now considered
to be “virtual addresses’

e The memory management unit (MM U)
translates the program addresses to the real
physical addresses of |ocations in memory

e Thisisanother of the many interface layers
that let us work with abstractions, instead
of al detalls at al levels

26-Oct-2001 CSE 410 - Virtual Memory

Virtual Physical

Pag| ng Page # Page #

0x0000 0 0 0x0000

Divide a process's virtual
address space into fixed-
size chunks (called pages)
Divide physical memory
INto pages of the same size
Any virtual page can be 0x0000
located at any physical

page

Trandlation box converts 0x4000

from virtual pagesto
physical pages

gl [W[N|F-

0x6000

OO N[O|O1 W[N]

WINFIO

Translation

OxEO000

26-Oct-2001 CSE 410 - Virtual Memory 9

Multiple Processes i Physica

Page # Page #

Share Memory oo 2 0¢0000

o A processdoesn't oxooo
know anything
about physical
addresses and
doesn't care

26-Oct-2001 CSE 410 - Virtual Memory 10

o Each process thinks ; ;
It starts at address 3 3
0x0000 and has all . .
of memory oo 6

;
9

WINFIO

0x4000

Translation

OxEO000

Protectl on Virtual Physical

Page # Page #
e A processcan only use 0x0000 1 0 Q |0x0000

virtual addresses

e A process can't corrupt
another process's memory

— It has no addressto refer to it ©x°0%°

e How can Blue writeto 0x0000
Greens's page 27?
— needs an address to refer to

physical page 7, but it doesn't %4000
have one

Ol | WIN| -

OO N[O O R~ W[IN|F

WIN| O

Translation

OxEOO0O
26-Oct-2001 CSE 410 - Virtual Memory 11

Store Memory on Disk

Virtual Physical
. _ Page # Page #
e Memory that isn't bel Nng 0x0000 [0 |0x0000
used can be saved on disk 1 1
— swapped back inwhenitis 2 2
referenced via page fault 3 3
4 4
* Programs can address z z
more memory than is 6 6
physically available VAN
» Thisisthe main reason we 8 S
: 9 9 | 0xA000
have virtual memory 10
— too hard for programsto do 11
this on their own (using 12 @
overlays, for example) ox£000| 13 1 Transiation D SK

26-Oct-2001 CSE 410 - Virtual Memory 12

Sparse Address
Spaces

 Memory that isn't being
used doesn't have to be
IN memory or on disk

— Code can start at
Ox00000000

— Stack can start at
address Ox 7FFFFFFF

— No physical pages
allocated for unused
addresses in between

0x0000

0x4000

OxO0FFCO00

0x1000000

Virtual

Page #

0

1
2
3

Unused

997

998

999

1000

26-Oct-2001 CSE 410 - Virtual Memory

Physical

Page #
0

OO N[O B|WIN|F-

Translation

0x0000

0xA000

13

Shaﬂ ng M emory Virtual Physical

Page # Page #

0x0000 0 0 0x0000
e TwO processes can share . ;
memory by mapping two > >
virtual pagesto the same 3 3
physical page 4 4
5 5
* The code for Word can 0x6000L =
be shared for two Word 0x0000 [7
Processes 1 8
— pages are read only 2 9
. = 10
 Each process has its own - 11
data pages = N[12
0x6000 Translatio 13

Word O0xE000

26-Oct-2001 CSE 410 - Virtual Memory 14

Virtual Address Trandation

virtual physical
address . . address
Vi rtual Physi cal
VPN » Transl ate » PPN
Page # page #
O f set y OF fset
26-Oct-2001 CSE 410 - Virtual Memory

15

program -> virtual -> physical

program address (32 bits)

T e) Y O O
virtual page nunber (20 bits) of fset in page (12)

J L

menory nanagenent unit

J L

physi cal page nunber (n bits) | offset in page (12)

T e s O
physi cal address (n+12 bits)

26-Oct-2001 CSE 410 - Virtual Memory 16

Page Tables

o Offset field 1s 12 bits
— s0 each page is 212 bytes = 4096 bytes = 4KB
 Virtual Page Number field is 20 bits
— 50 220 = 1 million virtual pages
* Pagetableisan array with one entry for
each virtual page
— 1 million entries
— entry includes physical page number and flags

26-Oct-2001 CSE 410 - Virtual Memory 17

Gack!

e Each process has a page table with 1
Million entries - big
— no memory left to store the actual programs

» Each page table must be referenced for
every address reference in a program - slow

— no time left to do any useful work
e But walt, system designers are clever kids

26-Oct-2001 CSE 410 - Virtual Memory 18

Page tables - size problem

* The page tables are addressed using virtual
addresses in the kernel

* Therefore they don't need physical memory
except for the parts that are actually used
— see “ Sparse Address Spaces’ diagram

o Operating System manages these tablesin
Its own address space
— kernel address space

26-Oct-2001 CSE 410 - Virtual Memory 19

Page Tables - speed problem

» Use special memory cache for page table
entries - Tranglation Lookaside Buffer

e Each TLB entry contains
— address space | D number (part of the tag)
— virtual page number (rest of the tag)
— flags (read only, dirty, etc)
— assoclated physical page number (the data)
 TLB isafully associative cache

26-Oct-2001 CSE 410 - Virtual Memory

20

A Process
Page Tabl e

PPN

refill >

Usingthe TLB

Process Program addr ess

ASI D

ASID| | Virtual Page Nunber | Ofset
Transl ati on Buffer
VPN | Physi cal Page Number
Physi cal address \ 4
Physi cal Page Nunber | O f set

Classifying Memory Management

* Where can a block be placed?

— Direct mapped, N-way Set or Fully associative
 How isablock found?

— Direct mapped: by index

— Set associative: by index and search

— Fully associative: by search or table lookup
* Which block should be replaced?

— Random

— LRU (Least Recently Used)

* What happens on awrite access?
— Write-back or Write-through

26-Oct-2001 CSE 410 - Virtual Memory 22

