Caches

CSE 410 - Computer Systems
October 24, 2001

Readings and References

* Reading

— Sections 7.1, 7.2, 7.3, Computer Organization & Design, Patterson
and Hennessy

* Other References
— Chapter 4, Cachesfor MIPS, See MIPS Run, D. Sweetman

24-Oct-2001 CSE 410 - Caches 2

The Quest for Speed - Memory

o |If al memory accesses (IF/Iw/sw) accessed
main memory, programs would run 20 times

slower
e And it’s getting worse
— processors speed up by 50% annually
— memory accesses speed up by 9% annually

— I’ s becoming harder and harder to keep these
processors fed

24-Oct-2001 CSE 410 - Caches

A Solution: Memory Hierarchy

. Keep copies of the active ‘;iztensxg
data in the small, fast, Sorage
expensive storage

* | i sow, large,
Keep all datain the big, o A

slow, cheap storage

24-Oct-2001 CSE 410 - Caches 4

Memory Hierarchy

Memory | Fabrication | Access |Typ.Size| $MB
Level Tech Time(ns) | (bytes)
Registers | Registers <0.5 256 1000
|1 Cache SRAM 2 8K 100
|2 Cache SRAM 10 1M 100
Memory DRAM 50 128M 0.75
Disk Magnetic 10M 32G 0.0035

Disk

24-Oct-2001

CSE 410 - Caches

What 1s a Cache?

e A cache allowsfor fast accesses to a subset of a
larger data store

* Your web browser’s cache gives you fast accessto
pages you visited recently

— faster because it’ s stored locally
— subset because the web won't fit on your disk
e The memory cache gives the processor fast access
to memory that it used recently
— faster because it’ s located on the CPU chip

24-Oct-2001 CSE 410 - Caches 6

Locality of reference

e Temporal locality - nearnessin time

— Data being accessed now will probably be
accessed again soon

— Useful data tends to continue to be useful

o Spatial locality - nearness in address

— Data near the data being accessed now will
probably be needed soon

— Useful datais often accessed sequentially

24-Oct-2001 CSE 410 - Caches

Memory Access Patterns

=

fel®

H

 Memory accesses
don’t look like this

— random accesses

24-Oct-2001

=

T

« Memory accesses do

look like this

— hot variables

— step through arrays

CSE 410 - Caches

8

Cache Terminology

e Hit and Miss

— the dataitem isin the cache or the dataitem is not in
the cache

e Hitrateand Missrate

— the percentage of references that the dataitem isin the
cache or not in the cache

e Hittimeand Misstime

— the time required to access data in the cache (cache
access time) and the time required to access data not in
the cache (memory access time)

24-Oct-2001 CSE 410 - Caches

Effective Access Time

cache cache
hit rate mss rate

; '
teffective = (h)tcache T (1' h)tmem)ry

! ! !

effective cache mMenory access
access tinme access tine time

aka, Average Memory Access Time (AMAT)

24-Oct-2001 CSE 410 - Caches 10

Cache Contents

* \WWhen do we put something in the cache?
— when it iIsused for the first time

* \When do we take something out of the
cache?

— W
ot
— al

nen we need the space in the cache for some
ner entry

of memory won't fit on the CPU chip so not

every location in memory can be cached

24-Oct-2001

CSE 410 - Caches 11

A small two-level hierarchy

O WON OO
— — (N

8-word cache

11

110100
111000
111100

—
(I
O© o<

11
12
12

24-Oct-2001

32-word memory (128 bytes)

CSE 410 - Caches

12

Fully Associative Cache

e Inafully associative
cache,
— any memory word can

be placed in any cache
line

— each cache line stores an 0001100
address and a data value 1101100

— accesses are slow (but
not as slow as you
would think)

24-Oct-2001

Address Valid Value
0010100 Y 0x00000001
0000100 N 0x09D91D11
0100100 Y 0x00000410
0101100 Y 0x00012D10
N 0x00000005
Y 0x0349A291
0100000 Y 0x000123A8
1111100 N 0x00000200

CSE 410 - Caches

13

Direct Mapped Caches

* Fully associative caches are too slow

 With direct mapped caches the address of
the item determines where in the cache to
store it

— In our example, the lower five bits of the
address dictate the location of the cache entry

— The lowest two bits are the byte offset within
the word

24-Oct-2001 CSE 410 - Caches 14

Direct Mapped Cache

| ndex

000,
001,
010,
011,
100,
101,
110,
111,

24-Oct-2001

N o o1~ WN BB O

Address valid Value

1100000 Y 0x00000001
1000100 N 0x09D91D11
0101000 Y 0x00000410
0001100 Y 0x00012D10
1010000 N 0x00000005
1110100 Y 0x0349A291
0011000 Y 0x000123A8
1011100 N 0x00000200

CSE 410 - Caches

15

Address Tags

o A tagisalabel for acache entry indicating
where it came from

— The upper bits of the data item’ s address

7 bit Address
1011101
Tag (2) | ndex (3) Byte O fset (2)
10 111 01

24-Oct-2001 CSE 410 - Caches

Cache with Address Tag

|ndex
000, =
001, =
010, =
011, =
100, =
101, =
110, =
111, =

24-Oct-2001

~N O o A W DN P O

Tag Valid Value

11 Y 0x00000001
10 N 0x09D91D11
01 Y 0x00000410
00 Y 0x00012D10
10 N 0x00000005
11 Y 0x0349A291
00 Y 0x000123A8
10 N 0x00000200

CSE 410 - Caches

17

N-way Set Associative Caches

 Direct mapped caches cannot store more than one
address with the same index

 |f two addresses collide, then you have to kick one
of them out

e 2-way associative caches can store two different
addresses with the same index
— 3-way, 4-way and 8-way set associative designs too
e Reduces misses due to conflicts
o Larger setsimply slower accesses

24-Oct-2001 CSE 410 - Caches 18

|ndex
000
001
010
011
100
101
110
111

2-way Set Associative Cache

Tag | Vaid Value Tag | Vaid Value

11 Y 0x00000001 00 Y 0x00000002
10 N 0x09D91D11 10 N 0x0000003B
01 Y 0x00000410 11 Y 0x000000CF
00 Y 0x00012D10 10 N Ox000000A2
10 N 0x00000005 11 N 0x00000333
11 Y 0x0349A291 10 Y 0x00003333
00 Y 0x000123A8 01 Y 0x0000C002
10 N 0x00000200 10 N 0x00000005

24-Oct-2001

CSE 410 - Caches

19

Assoclativity Spectrum

— =

Direct Mapped N-way Associative Fully Associative
Fast to access Slower to access Slow to access
Conflict Misses Fewer Conflict Misses No Conflict Misses

24-Oct-2001 CSE 410 - Caches 20

Spatial Locality

« Using the cache improves performance by
taking advantage of temporal locality

— When aword in memory Isaccessed it Is
loaded into cache memory

— It isthen available quickly if it Is needed again
soon

e Thisdoes nothing for spatial locality

24-Oct-2001 CSE 410 - Caches 21

an entire

Memory Blocks
e Divide memory into blocks

 If any word in ablock Is accessed, then load
nlock into the cache

Cacheline for 16 word block size

Block 0 0x00000000—-0x0000003F
Block 1 0x00000040-0x0000007F
Block 2 0x00000080-0x000000BF

tag

valid

Wo

W,

W,

Wj

W | Wg | Wy | Wg | Wg | Wyg | Wy | Wyp | Wiz | Wyy

24-Oct-2001

CSE 410 - Caches 22

Address Tags Revisited

* A cacheblock size > 1 word requires the address
to be divided differently

 Instead of abyte offset into aword, we need a
byte offset into the block

* Assuming we had 10-bit addresses, and 4 words in
a block...

10 bit Address
0101100111
Tag (3) | ndex (3) Bl ock Ofset (4)
010 110 0111

24-Oct-2001 CSE 410 - Caches 23

The Effects of Block Size

* Big blocks are good
— Fewer first time misses
— Exploits spatia locality
o Small blocks are good

— Don't evict so much other data when bringing
In anew entry

— Morelikely that al itemsin the block will turn
out to be useful

24-Oct-2001 CSE 410 - Caches

24

Reads vs. Writes

o Caching is essentially making a copy of the
data

* \When you read, the copies still match when
you're done

* \WWhen you write, the results must eventually

propagate to both copies

— Especidlly at the lowest level, which isin some
sense the permanent copy

24-Oct-2001 CSE 410 - Caches 25

Write-Through Caches

* Write all updates to both cache and memory

o Advantages
— The cache and the memory are always consi stent

— Evicting a cache line Is cheap because no data
needs to be written out to memory at eviction

— Easy to implement
e Disadvantages

— Runs at memory speeds when writing (can use
write buffer to reduce this problem)

24-Oct-2001 CSE 410 - Caches 26

Write-Back Caches

* Write the update to the cache only. Writeto
memory only when cache block is evicted

e Advantage
— Runs at cache speed rather than memory speed
— Some writes never go all the way to memory

— When awhole block 1swritten back, can use
high bandwidth transfer

* Disadvantage
— complexity required to maintain consistency

24-Oct-2001 CSE 410 - Caches 27

Dirty bit
* \WWhen evicting ablock from awrite-back
cache, we could

— aways write the block back to memory
— write it back only if we changed it

e Cachesusea“dirty bit” to mark if aline
was changed

— the dirty bit is O when the block is loaded
—Itissetto 1 if the block i1s modified

—when the line is evicted, it iswritten back only
If thedirty bitis1

24-Oct-2001 CSE 410 - Caches 28

|I-Cache and d-Cache

 There usually are two separate caches for
Instructions and data.

— Avoids structural hazards in pipelining

— The combined cache istwice as big but still has
an access time of asmall cache

— Allows both caches to operate in parallel, for
twice the bandwidth

24-Oct-2001 CSE 410 - Caches 29

Cache Line Replacement

 How do you decide which cache block to
replace?

 |f the cacheisdirect-mapped, it’s easy
— only one dot per index

e Otherwise, common strategies.

— Random
— Least Recently Used (LRU)

24-Oct-2001 CSE 410 - Caches 30

LRU Implementations

e LRU isvery difficult to implement for high
degrees of associativity

e 4-way approximation:
— 1 bit to indicate least recently used pair
— 1 bit per pair to indicate least recently used item

In this pair

 Wewill seethisagain at the operating

system level

24-Oct-2001 CSE 410 - Caches 31

Multi-Level Caches

e Use each level of the memory hierarchy as a
cache over the next lowest level

* Inserting level 2 between levels 1 and 3
allows:

— level 1 to have ahigher missrate (so can be
smaller and cheaper)

— level 3to have alarger access time (so can be
slower and cheaper)

24-Oct-2001 CSE 410 - Caches 32

L1
I-Cache

L1
d-Cache

L2
unified
Cache

Cache Comparisons

Alpha 21164 MIPS R10000 Pentium Pro UltraSparc 1
8KB 32KB 8KB 16KB
direct-mapped 2-way (LRU) 4-way pseudo 2-way
32B block 64B block 32B block 32B block
Alpha 21164 MIPS R10000 Pentium Pro UltraSparc 1
8KB 32KB 8KB 16KB
direct-mapped 2-way (LRU) 2-way direct-mapped
32B block 32B block 32B block 32B block
Alpha 21164 Pentium Pro

96K B 256K B

3-way 4-way

64B block 32B block

on chip same package

Summary: Classifying Caches

Where can a block be placed?

— Direct mapped, N-way Set or Fully associative
How is ablock found?

— Direct mapped: by index

— Set associative: by index and search

— Fully associative: by search
What happens on awrite access?

— Write-back or Write-through

Which block should be replaced?

— Random
— LRU (Least Recently Used)

24-Oct-2001 CSE 410 - Caches

