
Exceptions

CSE 410 - Computer Systems

October 22, 2001

22-Oct-2001 CSE 410 - Exceptions 2

Readings and References

• Reading
– Section 6.7, Computer Organization & Design, Patterson and

Hennessy

• Other References
– Chapter 5, See MIPS Run, D. Sweetman

22-Oct-2001 CSE 410 - Exceptions 3

Exceptions and Interrupts

• Many things can happen while executing
the assembled instructions
– External events (I/O device interrupt)
– Memory Translation exceptions
– Unusual floating point values
– Program errors (eg, invalid instruction)
– Data integrity failure
– System calls

22-Oct-2001 CSE 410 - Exceptions 4

Exceptions

• An exception is an internal event
– The unexpected or unusual condition was

caused by something the program did

– examples include
• arithmetic overflows, floating point problems

• syscalls

– If you ran the program again, the exception
would (probably) happen again at the same
point in the program’s execution

22-Oct-2001 CSE 410 - Exceptions 5

Exception/Pipelining Interface

• Suppose an add instruction overflows, causing an
overflow exception

• Instructions after the add are already in the
pipeline
– The partially computed instructions must be flushed

• Exception must be caught before register contents
have changed

22-Oct-2001 CSE 410 - Exceptions 6

“Precise” Exceptions

• A pipelined CPU always has several
instructions in various phases of completion

• When an exception occurs, the CPU will
record the location of the exception victim

• With Precise Exceptions
– All preceding instructions are completed

– All work on the victim and following is erased

22-Oct-2001 CSE 410 - Exceptions 7

Interrupts

• An interrupt is an external event
– The unexpected condition was not directly

caused by the program

– An I/O device request is an example

– If you ran the program again, the interrupt
would probably not happen at the same point

– Interrupts are another type of exception, caused
by an external event

22-Oct-2001 CSE 410 - Exceptions 8

What should happen?

• These events result in a change in the flow
of control

• Normally, the next instruction executed is
the one following the current instruction

• When one of these events takes place,
something else happens
– The system must respond to the event
– The response depends on the type of event

22-Oct-2001 CSE 410 - Exceptions 9

Exception Handling

• The CPU saves the address of the offending
instruction in a register

• Makes the reason for the exception known
– Set the value of the status register, or
– Use vectored interrupts to do step 3

• Transfers control to the operating system
• Operating system decides what to do

22-Oct-2001 CSE 410 - Exceptions 10

Exceptions example

 .data

big: .word 0x7FFFFFFF

kernelref: .word 0x80000000

 .text

main:

 la $t0,big # a valid aligned address

 lw $t1,1($t0) # err - unaligned load

 lw $t0,kernelref # kernel area address

 sw $t1,0($t0) # err - bad address

 lw $t0,big # big number

 lw $t1,big # another big number

 add $t2,$t0,$t1 # err - arithmetic overflow

 j $ra

22-Oct-2001 CSE 410 - Exceptions 11

Exception Example results

22-Oct-2001 CSE 410 - Exceptions 12

“trap.handler” is our OS

 .ktext 0x80000080

 .set noat

 # Because we are running in the kernel, we can use

 # $k0/$k1 without saving their old values.

 move $k1 $at # Save $at

 .set at

 sw $v0 s1 # Not re-entrant and we can't trust $sp

 sw $a0 s2

 mfc0 $k0 $13 # Cause

 sgt $v0 $k0 0x44 # ignore interrupt exceptions

 bgtz $v0 ret

 . . .

22-Oct-2001 CSE 410 - Exceptions 13

$k0, $k1

• Note that the trap handler uses $k0 and $k1
to get itself started

• Those are the only registers that it knows
are not being used by the user program

• An exception or interrupt may happen at
any time

• So the value of $k0 and $k1 will change
while your program is executing

22-Oct-2001 CSE 410 - Exceptions 14

Frequent Exceptions

• Syscall
– user program call to the operating system for

service

• TLB miss
– memory event, likely response is memory

allocation

• Interrupt
– device input / output event

