
1

Pipelining - Part 2

CSE 410 - Computer Systems

October 19, 2001

19-Oct-2001 CSE 410 - Pipelining Part 2 2

Readings and References

• Reading
– Sections 6.4 through 6.6, Patterson and Hennessy, Computer

Organization & Design

• Other References

19-Oct-2001 CSE 410 - Pipelining Part 2 3

Control Hazards

• Branch instructions cause control hazards (aka
branch hazards) because we don’t know which
instruction to fetch next

do we fetch the
add or the sub?

we don’t know
until here

IF ID EX MEM WB

IF ID EX MEM WB

bne $s0, $s1, skip

add $s4, $s3, $s0

skip:

 sub $s4, $s3, $s0

...

19-Oct-2001 CSE 410 - Pipelining Part 2 4

Stall for branch hazard

• We could stall to see which instruction to
execute next
– would introduce a 4-cycle pipeline bubble

IF ID EX MEM WB

IF ID EX MEM WBstall

bne $s0, $s1, next

sub $s4, $s3, $s0

19-Oct-2001 CSE 410 - Pipelining Part 2 5

Move Branch Logic to ID

• Move the branch hardware to ID stage
– Hardware to compare two registers is simpler

than hardware to add them

• We still have to stall for one cycle

• And we can’t move the branch up any more

IF ID EX MEM WB

IF ID EX MEM WBstall

bne $s0, $s1, next

sub $s4, $s3, $s0

19-Oct-2001 CSE 410 - Pipelining Part 2 6

Reordering Instructions

• Reordering instructions is a common
technique for avoiding pipeline stalls

• Static reordering
– programmer, compiler and assembler do this

• Dynamic reordering
– modern processors can see several instructions
– they execute any that have no dependency
– this is known as out-of-order execution and is

complicated to implement

2

19-Oct-2001 CSE 410 - Pipelining Part 2 7

Branch Delay Slot

• A branch now causes a stall of one cycle

• Try to execute an instruction instead of stall

• The compiler (assembler, programmer)
must find an instruction to fill the branch
delay slot
– 50% of the instructions are useful

– 50% are nops which don’t do anything

19-Oct-2001 CSE 410 - Pipelining Part 2 8

Branch Delay Slot execution

• Instruction in the branch delay slot always
executes, no matter what the branch does
– it follows the branch in memory

– but it “piggybacks” and is always executed

– no bubble at all

IF ID EX MEM WB

IF ID EX MEM WB

bne $s0, $s1, next

sub $s4, $s3, $s0

IF ID EX MEM WBadd $s3,$s3,1

19-Oct-2001 CSE 410 - Pipelining Part 2 9

beq with delay slot

 .set noreorder

 .set nomacro

 beq $v0,$zero,$L4

 move $s1,$s4

 .set macro

 .set reorder

19-Oct-2001 CSE 410 - Pipelining Part 2 10

jal with delay slot

 move $a0,$s3

 move $a1,$s0

 .set noreorder

 .set nomacro

 jal QuickSort

 move $a2,$s4

 .set macro

 .set reorder

19-Oct-2001 CSE 410 - Pipelining Part 2 11

Assume we will not branch

• Assume the branch is not taken
– Execute the next instruction in memory

• If we guessed right, we’re golden
– no bubble at all

• If we guessed wrong, then we lose a little
– squash the partially completed instructions.

– This is called flushing the pipeline

– Wasted time, but would have stalled anyway
19-Oct-2001 CSE 410 - Pipelining Part 2 12

Squash

• Must be able to completely suppress the
effects of guessing wrong
– An instruction cannot write to memory or a

register until we’re sure it should execute

3

19-Oct-2001 CSE 410 - Pipelining Part 2 13

Assume Branch Not Taken

 bne $s0,$zero,Done
 addi $t0,$t0,1
 addi $t0,$t0,3
Done: move $t1,$t0

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Branch not taken

bne

addi

addi

IF ID EX MEM WB

IF ID EX MEM WB

IF SQUASH

Branch taken

bne

addi

move

19-Oct-2001 CSE 410 - Pipelining Part 2 14

Static Branch Prediction

• Most backwards branch are taken (80%)
– they are part of loops

• Half of forward branches are taken (50%)
– if statements

• Common static branch prediction scheme is
– predict backwards branches are taken

– predict forward branches are not taken

• This does okay (70-80%), but not great

19-Oct-2001 CSE 410 - Pipelining Part 2 15

Dynamic Branch Prediction
• Most programs are pretty regular

– Most of the time only execute a small subset of
the program code

– Same branch instructions execute repeatedly

• A particular branch instruction is usually:
– taken if it was taken last time
– not taken if it was not taken last time

• If we keep a history of each branch
instruction, then we can predict much better

19-Oct-2001 CSE 410 - Pipelining Part 2 16

Dynamic Branch Prediction

• The CPU records what happened last time
we executed the branch at this address

• Generally record last two results
– simple 4-state transition table makes prediction

• Dynamic branch prediction is 92-98%
accurate

19-Oct-2001 CSE 410 - Pipelining Part 2 17

2-bit prediction scheme

predict: taken

predict: not takenpredict: not taken

taken

predict: taken

taken

taken

taken

not taken

not taken

not taken

not taken

00 01

10 11

19-Oct-2001 CSE 410 - Pipelining Part 2 18

Implementing Branch Prediction

• There is not room to store every branch
instruction address
– so last few bits of the instruction address are

used to index into the table

– some instructions collide like a hash table

– but that’s okay, it just means we’re wrong once
in a while

4

19-Oct-2001 CSE 410 - Pipelining Part 2 19

Branch Prediction Table

.........

not taken100x0040223C

00

11

...

state?

......

taken0x004F0238

not taken0x00401234

PredictAddress

...

no

...

no

yes

correct?

...

00

01

11

...

new state

19-Oct-2001 CSE 410 - Pipelining Part 2 20

Importance of Branch Prediction

• Branches occur very frequently
– every five instructions on average

• Modern processors execute up to 4
instructions per cycle
– so a branch occurs every 2 cycles

• Newer pipelines are getting longer
– 8,9,11,13 cycles
– error penalty is 3-5 cycles instead of 1 cycle

