Pipelining - Part 2

CSE 410 - Computer Systems
October 19, 2001

Readings and References

* Reading

— Sections 6.4 through 6.6, Patterson and Hennessy, Computer
Organization & Design

e Other References

19-Oct-2001 CSE 410 - Pipelining Part 2

Control Hazards

« Branch instructions cause control hazards (aka
branch hazards) because we don’t know which

Instruction to fetch next we don’'t know
until here
bne $s0, $si1, skip |F | I D| EX | MEM| V\B

add $s4, $s3, $sO

|F [1D | EX | MEM| V\B

ski p:

sub $s4, $s3, $sO do we fetch the
add or the sub?

19-Oct-2001 CSE 410 - Pipelining Part 2

Stall for branch hazard

 \We could stall to see which instruction to
execute next

— would introduce a 4-cycle pipeline bubble

bne $s0, $s1, next| |F | ID | EX | MEM| VB

sub $s4, $s3, $sO stall IF |1 ID | EX | MEM

19-Oct-2001 CSE 410 - Pipelining Part 2

Move Branch Logicto ID

 Movethe branch hardwareto ID stage

— Hardware to compare two registersis simpler
than hardware to add them

 We still haveto stall for one cycle

e Andwecan't movethe

bne $s0, $s1, next

sub $s4, $s3, $sO

19-Oct-2001

oranch up any more

| F

| D

EX | MEM| VB

stall

|F | ID | EX | MEM| VB

CSE 410 - Pipelining Part 2

Reordering Instructions

* Reordering instructions is a common
technique for avoiding pipeline stalls

o Static reordering
— programmer, compiler and assembler do this

* Dynamic reordering
— modern processors can see several instructions
— they execute any that have no dependency

— thisis known as out-of-order execution and IS
complicated to implement

19-Oct-2001 CSE 410 - Pipelining Part 2

Branch Delay Slot

* A branch now causes astall of one cycle
e Try to execute an instruction instead of stall

e The compiler (assembler, programmer)
must find an instruction to fill the branch
delay slot

— 50% of the instructions are useful
— 50% are nops which don’t do anything

19-Oct-2001 CSE 410 - Pipelining Part 2

Branch Delay Slot execution

* Instruction in the branch delay slot always
executes, no matter what the branch does

— It follows the branch in memory
— but it “piggybacks’ and is always executed

— no bubble at al
bne $s0, $s1, next | F ID | EX | MEM| VB
add $s3, $s3, 1 |F | ID | EX | MEM| W\B

sub $s4, $s3, $s0 IF | ID]| EX | MEM|] VWB

19-Oct-2001 CSE 410 - Pipelining Part 2

. Sset
. set
beq
nove
. Sset
. Sset

19-Oct-2001

beg with delay slot

nor eor der
nomacr o

$v0, $zero, $L4
$s1, $s4

Macr o

reor der

CSE 410 - Pipelining Part 2

nove
nove
. set
. set
] al

nove
. set
. set

19-Oct-2001

ja with delay dlot

$a0, $s3
$al, $sO
nor eor der
nonacr o
Qui ckSort
$a2, $s4
Macr o
reor der

CSE 410 - Pipelining Part 2

10

Assume we will not branch

e Assume the branch is not taken
— Execute the next instruction in memory

 |f we guessed right, we're golden
— no bubble at all

 |f we guessed wrong, then we lose alittle
— sguash the partially completed instructions.
— Thisis called flushing the pipeline
— Wasted time, but would have stalled anyway

19-Oct-2001 CSE 410 - Pipelining Part 2

11

Sguash

 Must be able to completely suppress the
effects of guessing wrong

— An instruction cannot write to memory or a
register until we're sure it should execute

19-Oct-2001 CSE 410 - Pipelining Part 2

12

Assume Branch Not Taken

Branch not taken

bne $s0, $zer o, Done
addi $t0,$t0,1 bne [1F] ip| ex [vem]| w8
addi $tO0O, $t0, 3 .
Done: rove $t1, $t0 addi IF | I1D]| EX | MeM| WB
addi [e | D] ex | vem]| wB
Branch taken
bne | i1f | ip | ex | vem| w8
addi F | SQUASH
nove IF | ID]|] EX | Mem]| VB
19-Oct-2001 CSE 410 - Pipelining Part 2 13

Static Branch Prediction

* Most backwards branch are taken (80%o)
— they are part of loops

o Half of forward branches are taken (50%o)
— If statements

e Common static branch prediction schemeis
— predict backwards branches are taken
— predict forward branches are not taken

e This does okay (70-80%), but not great

19-Oct-2001 CSE 410 - Pipelining Part 2 14

Dynamic Branch Prediction

e Most programs are pretty regular

— Most of the time only execute a small subset of
the program code

— Same branch instructions execute repeatedly

« A particular branch instruction is usually:
— taken if it was taken last time
— not taken if it was not taken last time

 If we keep ahistory of each branch
Instruction, then we can predict much better

19-Oct-2001 CSE 410 - Pipelining Part 2 15

Dynamic Branch Prediction

e The CPU records what happened last time
we executed the branch at this address

o Generally record last two results
— simple 4-state transition table makes prediction

* Dynamic branch prediction is 92-98%
accurate

19-Oct-2001 CSE 410 - Pipelining Part 2 16

2-bit prediction scheme

T

predict: taken

00

not taken

predict: taken

01

not taken

predict: not taken

10

predict: not taken

11
not taken

19-Oct-2001 CSE 410 - Pipelining Part 2 17

|mplementing Branch Prediction

* Thereisnot room to store every branch
Instruction address

— s0 last few bits of the instruction address are
used to index into the table

— some Instructions collide like a hash table

— but that’ s okay, It just means we' re wrong once
Inawhile

19-Oct-2001 CSE 410 - Pipelining Part 2 18

Branch Prediction Table

Address State? Predict correct? | new state
0x00401234 11 not taken yes 11
Ox004F0238 00 t aken no 01
0x0040223C 10 not taken no 00

19-Oct-2001 CSE 410 - Pipelining Part 2

19

|mportance of Branch Prediction

e Branches occur very frequently
— every five instructions on average

* Modern processors execute up to 4
Instructions per cycle

— S0 a branch occurs every 2 cycles

* Newer pipelines are getting longer
—8,9,11,13 cycles
— error penalty 1s 3-5 cyclesinstead of 1 cycle

19-Oct-2001 CSE 410 - Pipelining Part 2

20

