
Pipelining

CSE 410 - Computer Systems

October 17, 2001

17-Oct-2001 CSE 410 - Pipelining 2

Readings and References

• Reading
– Sections 6.1 through 6.3, Patterson and Hennessy, Computer

Organization & Design

• Other References

17-Oct-2001 CSE 410 - Pipelining 3

Execution Cycle

1. Instruction Fetch
2. Instruction Decode
3. Execute
4. Memory
5. Write Back

IF ID EX MEM WB

17-Oct-2001 CSE 410 - Pipelining 4

IF and ID Stages

1. Instruction Fetch
– Get the next instruction from memory
– Increment Program Counter value by 4

2. Instruction Decode
– Figure out what the instruction says to do
– Get values from the named registers
– Simple instruction format means we know

which registers we may need before the
instruction is fully decoded

17-Oct-2001 CSE 410 - Pipelining 5

Simple MIPS Instruction Formats

op code word offset

6 bits 26 bits

op code source 1 source 2 dest shamt function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op code base reg src/dest offset or immediate value

6 bits 5 bits 5 bits 16 bits

R

I

J

17-Oct-2001 CSE 410 - Pipelining 6

EX, MEM, and WB stages
3. Execute

– On a memory reference, add up base and offset
– On an arithmetic instruction, do the math

4. Memory Access
– If load or store, access memory

– If branch, replace PC with destination address

– Otherwise do nothing

5. Write back
– Place the results in the appropriate register

17-Oct-2001 CSE 410 - Pipelining 7

• IF get instruction at PC from memory

• ID determine what instruction is and read registers
– 000000 with 100000 is the add instruction

– get contents of $s1 and $s2 (eg: $s1=7, $s2=12)

• EX add 7 and 12 = 19

• MEM do nothing for this instruction

• WB store 19 in register $s0

Example: add $s0, $s1, $s2

op code source 1 source 2 dest shamt function

000000 10001 10010 10000 00000 100000

17-Oct-2001 CSE 410 - Pipelining 8

Example: lw $t2, 16($s0)

• IF get instruction at PC from memory

• ID determine what 010111 is
– 010111 is lw

– get contents of $s0 and $t2 (we don’t know that we
don’t care about $t2) $s0=0x200D1C00, $t2=77763

• EX add 16 to 0x200D1C00 = 0x200D1C10

• MEM load the word stored at 0x200D1C10

• WB store loaded value in $t2

op code base reg src/dest offset or immediate value

010111 10000 01000 0000000000010000

17-Oct-2001 CSE 410 - Pipelining 9

IF ID EX MEM WB

IF ID EX MEM WB

1 2 3 4 5 6 7 8 9 10

inst 1
inst 2

Latency & Throughput

• Latency—the time it takes for an individual
instruction to execute
– What’s the latency for this implementation?

• Throughput—the number of instructions that
execute per unit time
– What’s the throughput of this implementation?

17-Oct-2001 CSE 410 - Pipelining 10

A case for pipelining

• If non-overlapped, the functional units are
underutilized because each unit is used only
once every five cycles

• If Instruction Set Architecture is carefully
designed, organization of the functional units
can be arranged so that they execute in parallel

• Pipelining overlaps the stages of execution so
every stage has something to do each cycle

17-Oct-2001 CSE 410 - Pipelining 11

Pipelined Latency & Throughput

• What’s the throughput of this implementation?

• What’s the latency of this implementation?

1 2 3 4 5 6 7 8 9

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

inst 1
inst 2

inst 3
inst 4

inst 5

17-Oct-2001 CSE 410 - Pipelining 12

Pipelined Analysis

• A pipeline with N stages could improve
throughput by N times, but
– each stage must take the same amount of time

– each stage must always have work to do

– there may be some overhead to implement

• Also, latency for each instruction may go up
– Within some limits, we don’t care

17-Oct-2001 CSE 410 - Pipelining 13

Throughput is good!

increasing
number of
instructions

increasing time

overlapped

sequential

17-Oct-2001 CSE 410 - Pipelining 14

MIPS ISA: Born to Pipeline

• Instructions all one length
– simplifies Instruction Fetch stage

• Regular format
– simplifies Instruction Decode

• Few memory operands, only registers
– only lw and sw instructions access memory

• Aligned memory operands
– only one memory access per operand

17-Oct-2001 CSE 410 - Pipelining 15

Memory accesses

• Efficient pipeline requires each stage to take
about the same amount of time

• CPU is much faster than memory hardware

• Cache is provided on chip
– i-cache holds instructions

– d-cache holds data

– critical feature for successful RISC pipeline

– more about caches next week

17-Oct-2001 CSE 410 - Pipelining 16

The Hazards of Parallel Activity

• Any time you get several things going at
once, you run the risk of interactions and
dependencies
– juggling doesn’t take kindly to irregular events

• Unwinding activities after they have started
can be very costly in terms of performance
– drop everything on the floor and start over

17-Oct-2001 CSE 410 - Pipelining 17

Design for Speed

• Most of what we talk about next relates to
the CPU hardware itself
– problems keeping a pipeline full

– solutions that are used in the MIPS design

• Some programmer visible effects remain
– many are hidden by the assembler or compiler

– the code that you write tells what you want
done, but the tools rearrange it for speed

17-Oct-2001 CSE 410 - Pipelining 18

Pipeline Hazards

• Structural hazards
– Instructions in different stages need the same

resource, eg, memory

• Data hazards
– data not available to perform next operation

• Control hazards
– data not available to make branch decision

17-Oct-2001 CSE 410 - Pipelining 19

Structural Hazards

• Concurrent instructions want same resource
– lw instruction in stage four (memory access)

– add instruction in stage one (instruction fetch)

– Both of these actions require access to memory;
they would collide if not designed for

• Add more hardware to eliminate problem
– separate instruction and data caches

• Or stall (cheaper & easier), not usually done

17-Oct-2001 CSE 410 - Pipelining 20

Data Hazards

• When an instruction depends on the results
of a previous instruction still in the pipeline

• This is a data dependency

add $s0, $s1, $s2

add $s4, $s3, $s0

$s0 is
read here

IF ID EX MEM WB

IF ID EX MEM WB

$s0 is
written here

17-Oct-2001 CSE 410 - Pipelining 21

Stall for register data dependency

• Stall the pipeline until the result is available
– this would create a 3-cycle pipeline bubble

add s0,s1,s2

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WBstall

17-Oct-2001 CSE 410 - Pipelining 22

Read & Write in same Cycle

• Write the register in the first part of the clock cycle
• Read it in the second part of the clock cycle

• A 2-cycle stall is still required

add s0,s1,s2

add s4,s3,s0 IF stall

IF ID EX MEM WB

ID EX MEM WB

write $s0

read $s0

17-Oct-2001 CSE 410 - Pipelining 23

Solution: Forwarding

• The value of $s0 is known internally after cycle 3
(after the first instruction’s EX stage)

• The value of $s0 isn’t needed until cycle 4 (before
the second instruction’s EX stage)

• If we forward the result there isn’t a stall

add s0,s1,s2

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WB

17-Oct-2001 CSE 410 - Pipelining 24

Another data hazard

• What if the first instruction is lw?

• s0 isn’t known until after the MEM stage
– We can’t forward back into the past

• Either stall or reorder instructions

lw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WB

NO!

17-Oct-2001 CSE 410 - Pipelining 25

Stall for lw hazard

• We can stall for one cycle, but we hate to stall

lw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

IF ID EX MEM WBstall

17-Oct-2001 CSE 410 - Pipelining 26

Instruction Reorder for lw hazard

lw s0,0(s2)

add s4,s3,s0

IF ID EX MEM WB

sub t4,t2,t3 IF ID EX MEM WB

IF ID EX MEM WB

sub t4,t2,t3

• Try to execute an unrelated instruction
between the two instructions

17-Oct-2001 CSE 410 - Pipelining 27

Reordering Instructions

• Reordering instructions is a common
technique for avoiding pipeline stalls

• Static reordering
– programmer, compiler and assembler do this

• Dynamic reordering
– modern processors can see several instructions
– they execute any that have no dependency
– this is known as out-of-order execution and is

complicated to implement

