Number Formats

CSE 410 - Computer Systems
 October 15, 2001

Readings and References

- Reading
- Sections 4.1 through 4.4, 4.8 through page 280, 4.11, 4.12, Patterson and Hennessy, Computer Organization \& Design
- Other References

Signed Numbers

- We have already talked about unsigned binary numbers
- each bit position represents a power of 2
- range of values is 0 to $2^{n}-1$
- How can we indicate negative values?
- two states: positive or negative
- a binary bit indicates one of two states: 0 or 1
\Rightarrow use one bit for the sign bit

Where is the sign bit?

- Could use an additional bit to indicate sign
- each value would require 33 bits
- would really foul up the hardware design
- Could use any bit in the 32-bit word
- any bit but the left-most (high order) would complicate the hardware tremendously
- The high order bit (left-most) is the sign bit
- remaining bits indicate the value

Format of 32-bit signed integer

sign bit
(1 bit)
numeric value
(31 bits)

31 ...

- Bit 31 is the sign bit
- 0 for positive numbers, 1 for negative numbers
- aka most significant bit (msb), high order bit

Example: 4-bit signed numbers

Hex	Bin	Unsigned Decimal	Signed Decimal
F	1111	15	-1
E	1110	14	-2
D	1101	13	-3
C	1100	12	-4
B	1011	11	-5
A	1010	10	-6
9	1001	9	-7
8	1000	8	-8
7	0111	7	7
6	0110	6	6
5	0101	5	5
4	0100	4	4
3	0011	3	3
2	0010	2	2
1	0001	1	1
0	0000	0	0

Two's complement notation

- Note special arrangement of negative values
- One zero value, one extra negative value
- The representation is exactly what you get by doing a subtraction

Decimal	Binary
1	0001
-7	-0111
---	----
-6	1010

Why "two's" complement?

- In an n-bit word, negative x is represented by the value of $2^{n}-x$
- 4-bit example
$2^{4}=16$. What is the representation of -6 ?

Decimal	Binary
16	10000
$-\quad 6$	$-\quad 0110$
---	----
10	1010

Negating a number

- Given x , how do we represent negative x ?
negative $(x)=2^{n-x}$
and $\mathbf{x + c o m p l e m e n t}(\mathbf{x})=2^{\mathrm{n}}-1$
so negative (x) $=2^{\mathrm{n}}-\mathrm{x}=$ complement (x$)+1$
- The easy shortcut
- write down the value in binary
- complement all the bits
- add 1

Example: the negation shortcut

$$
\begin{aligned}
\text { decimal } 6 & =0110=+6 \\
\text { complement } & =1001 \\
\text { add } 1 & =1010=-6 \\
\text { decimal }-6 & =1010=-6 \\
\text { complement } & =0101 \\
\text { add } 1 & =0110=+6
\end{aligned}
$$

Signed and Unsigned Compares

Hex	Bin	Unsigned Decimal	Signed Decimal
F	1111	15	-1
E	1110	14	-2
D	1101	13	-3
C	1100	12	-4
B	1011	11	-5
A	1010	10	-6
9	1001	9	-7
8	1000	8	-8
7	0111	7	7
6	0110	6	6
5	0101	5	5
4	0100	4	4
3	0011	3	3
2	0010	2	2
1	0001	1	1
0	0000	0	0

add	$\$ t 0$, \$zero,-1
li	$\$ t 1,7$
slt	$\$ t 2, \$ t 0, \$ t 1$

Note: using 4-bit signed numbers in this example. The same relationships exist with 32-bit signed values.

Loading bytes

- Unsigned: lbu \$reg, a (\$reg)
- the byte is 0 -extended into the register

0000	0000	0000	0000	0000

- Signed: lb \$reg, a (\$reg)
- bit 7 is extended through bit 31

0000	0000	0000	0000	0000

1111	1111	1111	1111	1111	1111	$1 \times x x$

Why Floating Point?

- The numbers we have talked about so far have all been integers in the range 0 to 4B or $-2 B$ to $+2 B$
- What about numbers outside that range?
- population of the planet: 6 billion+
- What about numbers that have a fractional part in addition to the integer part?
- $\pi=3.1415926535 \ldots$

Could use scaling to get fractions

- Assume that every numeric value in memory was scaled by a factor of 1000
$3000=>$ represents 3.000
$3010=>$ represents 3.010
- Problems
- one scale factor for all numbers?
- impossible to choose one "best" scale factor for all numbers that we might want to represent

A scale factor for each number

- This is the same as scientific notation
$-6 \times 10^{9}, 3.1415926535 \times 10^{0}$
- A floating point number contains two parts
- mantissa (or significand): the value
- exponent: the exponent of the scale factor
- Normalized form
- a non-zero single digit before the decimal point

"Binary scientific notation"

- The computer only stores binary numbers
- So we use powers of 2 rather than 10
- Normalized numbers have a leading 1
- $6,000,000,000=6.0 \times 10^{9}$
$-1.3969838619_{10} \times 2^{32}$
- $\pi \cong 3.141592653589793238462643383$
$-1.57079632679489661923132169163975 \times 2^{1}$

Storage format: fixed width fields

- How big can the exponent be?
- what is the range it represents?
- How big can the mantissa be?
- what are the values it represents?
- We have to select a storage format and allocate specific fields to various purposes
- single precision: one 32-bit word
- double precision: two 32-bit words

IEEE 754 Standard

- Chaos in the 70s and 80s as each system designer chose new formats and rules
- IEEE 754 standard
- format of the fields
- rounding: up, down, towards 0 , nearest
- exceptional values: \pm infinity, NaN (not a number)
- action to take on exceptional values

Floating Point Storage

- Single Precision
- one word (32 bits)
- Double Precision
- two words (64 bits)
- the order of the words depends on endianness of the machine being used
- Defined by IEEE 754

Single Precision Format

Double Precision Format

Double Precision Mantissa Fields

- Sign bit
- 1 bit sign for the value
- Mantissa
- 52 bits for the value
- by definition, the leading digit is always a 1
- so we don't need to actually store it
- and we actually have 53 bits of information

Double Precision Exponent Field

- Field range
-11 bits: range $2^{11}=2048$ possible values
- Special values
- exponent $=2047 \Rightarrow$ value $=$ special (inf, NaN)
- exponent $=0 \Rightarrow$ value $=0$

Biased Notation

- Need exponent range - negative and positive
- If positive exponents are bigger numbers than the negative exponents, then floating point numbers can be sorted as integers
- Exponent is stored as $(\mathrm{E}+1023)$
- most positive exponent is +1023 (stored as 2046)
- most negative exponent is -1022 (stored as 1)
- this is not two's complement notation

Example: 6,174,015,488

- 6174015488

$$
=6.174015488 \times 10^{9}=1.4375_{10} \times 2^{32}
$$

- Exponent

$$
=32+1023=1055=41 \mathrm{~F}_{16}
$$

- Mantissa

$$
=.4375_{10}=.0111_{2}=7_{16}
$$

6,174,015,488

Roundoff Error

- Adding a very small floating point number to a very large floating point number may not have any effect
- any one number has only 53 significant bits
- Adding a number with a fractional part to another number over and over will probably never yield an exactly integer result
- so don't use floating point loop indexes

Loss of precision

```
1101000000000000.00000000 0000 0000=1.101 = < 2 15
000000000000 0000.000000000000 1101 = 1.101 }\times1.0\mp@subsup{2}{}{-13
```

- These are not unusual numbers 53248 and 0.0001983642578125
- Very few bits of mantissa required
- But their sum requires a mantissa with at least 32 bits or there will lost significant bits

