Number Formats

CSE 410 - Computer Systems October 15, 2001

Readings and References

• Reading

- Sections 4.1 through 4.4, 4.8 through page 280, 4.11, 4.12,
 Patterson and Hennessy, Computer Organization & Design
- Other References

Signed Numbers

- We have already talked about unsigned binary numbers
 - each bit position represents a power of 2
 - range of values is 0 to 2^{n} -1
- How can we indicate negative values?
 - two states: positive or negative
 - a binary bit indicates one of two states: 0 or 1
 - \Rightarrow use one bit for the sign bit

Where is the sign bit?

• Could use an additional bit to indicate sign

– each value would require 33 bits

- would really foul up the hardware design
- Could use any bit in the 32-bit word
 - any bit but the left-most (high order) would complicate the hardware tremendously
- The high order bit (left-most) is the sign bit – remaining bits indicate the value

Format of 32-bit signed integer

• Bit 31 is the sign bit

-0 for positive numbers, 1 for negative numbers

– aka most significant bit (msb), high order bit

Example: 4-bit signed numbers

Hex	Bin	Unsigned Decimal	Signed Decimal	• 1•
F	1111	15	-1	sign bit
Е	1110	14	-2	(1 bit)
D	1101	13	-3	
С	1100	12	-4	\ num
в	1011	11	-5	
А	1010	10	-6	
9	1001	9	-7	
8	1000	8	-8	
7	0111	7	7	
6	0110	6	6	
5	0101	5	5	
4	0100	4	4	
3	0011	3	3	
2	0010	2	2	
1	0001	1	1	
0	0000	0	0	

15-Oct-2001

Two's complement notation

- Note special arrangement of negative values
- One zero value, one extra negative value
- The representation is exactly what you get by doing a subtraction

Decimal	Binary
1	0001
- 7	- 0111
-6	1010

Why "two's" complement?

- In an n-bit word, negative x is represented by the value of 2ⁿ-x
- 4-bit example

 $2^4 = 16$. What is the representation of -6?

Decimal	Binary
16	10000
- 6	- 0110
10	1010

Negating a number

- Given x, how do we represent negative x?
 - $negative(x) = 2^n x$
 - and $x+complement(x) = 2^n-1$
 - so negative(x) = 2ⁿ-x = complement(x)+1
- The easy shortcut
 - write down the value in binary
 - complement all the bits
 - add 1

Example: the negation shortcut

- decimal 6 = 0110 = +6
- complement = 1001
 - add 1 = 1010 = -6
- decimal -6 = 1010 = -6complement = 0101
 - add 1 = 0110 = +6

Signed and Unsigned Compares

Hex	Bin	Unsigned Decimal	Signed Decimal				
F	1111	15	-1				
Е	1110	14	-2				
D	1101	13	-3				
С	1100	12	-4				
в	1011	11	-5				
A	1010	10	-6				
9	1001	9	-7				
8	1000	8	-8				
7	0111	7	7				
6	0110	6	6				
5	0101	5	5				
4	0100	4	4				
3	0011	3	3				
2	0010	2	2				
1	0001	1	1				
0	0000	0	0				

add	\$t0,\$zero,-1				
li	\$t1, <mark>7</mark>				
slt	\$t2,\$t0,\$t1	#	t2	=	1
sltu	\$t3,\$t0,\$t1	#	t3	=	0

Note: using 4-bit signed numbers in this example. The same relationships exist with 32-bit signed values.

15-Oct-2001

Loading bytes

• Unsigned: 1bu \$reg, a(\$reg)

- the byte is 0-extended into the register

0000 0000 0000 0000 0000 0000 xxxx xxxx

- Signed: 1b \$reg, a(\$reg)
 - bit 7 is extended through bit 31

0000 0000 0000 0000 0000 0000 0xxx xxxx

1111	1111	1111	1111	1111	1111	1xxx	xxxx
------	------	------	------	------	------	------	------

Why Floating Point?

- The numbers we have talked about so far have all been integers in the range 0 to 4B or -2B to +2B
- What about numbers outside that range?

– population of the planet: 6 billion+

• What about numbers that have a fractional part in addition to the integer part? $-\pi = 3.1415926535...$

Could use scaling to get fractions

- Assume that every numeric value in memory was scaled by a factor of 1000 3000 => represents 3.000 3010 => represents 3.010
- Problems
 - one scale factor for all numbers?
 - impossible to choose one "best" scale factor for all numbers that we might want to represent

A scale factor for each number

- This is the same as scientific notation 6 x 10⁹, 3.1415926535 x 10⁰
- A floating point number contains two parts
 - mantissa (or significand): the value
 - exponent: the exponent of the scale factor
- Normalized form

– a non-zero single digit before the decimal point

"Binary scientific notation"

- The computer only stores binary numbers
 - So we use powers of 2 rather than 10
 - Normalized numbers have a leading 1
- $6,000,000,000 = 6.0 \times 10^9$

 $-\ 1.3969838619_{10} \ge 2^{32}$

• $\pi \cong 3.141592653589793238462643383$ - 1.57079632679489661923132169163975 x 2¹

Storage format: fixed width fields

• How big can the exponent be?

– what is the range it represents?

• How big can the mantissa be?

– what are the values it represents?

- We have to select a storage format and allocate specific fields to various purposes
 - single precision: one 32-bit word
 - double precision: two 32-bit words

IEEE 754 Standard

- Chaos in the 70s and 80s as each system designer chose new formats and rules
- IEEE 754 standard
 - format of the fields
 - rounding: up, down, towards 0, nearest
 - exceptional values: ±infinity, NaN (not a number)
 - action to take on exceptional values

Floating Point Storage

- Single Precision
 - one word (32 bits)
- Double Precision
 - two words (64 bits)
 - the order of the words depends on endianness of the machine being used
- Defined by IEEE 754

Single Precision Format

Double Precision Format

S	exponent									mantissa (high order bits)																					
1	l 11 bits									20 bits																					
0	1	0	0	0	0	0	1	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

15-Oct-2001

CSE 410 - Number Formats

Double Precision Mantissa Fields

- Sign bit
 - 1 bit sign for the value
- Mantissa
 - 52 bits for the value
 - by definition, the leading digit is always a 1
 - so we don't need to actually store it
 - and we actually have 53 bits of information

Double Precision Exponent Field

- Field range
 - 11 bits: range $2^{11} = 2048$ possible values
- Special values
 - exponent = 2047 \Rightarrow value=special (inf, NaN)
 - exponent $= 0 \Rightarrow$ value= 0

Biased Notation

- Need exponent range negative and positive
- If positive exponents are bigger numbers than the negative exponents, then floating point numbers can be sorted as integers
- Exponent is stored as (E+1023)
 - most positive exponent is +1023 (stored as 2046)
 - most negative exponent is -1022 (stored as 1)
 - this is not two's complement notation

Example: 6,174,015,488

- 6174015488
 - $= 6.174015488 \times 10^9 = 1.4375_{10} \times 2^{32}$
- Exponent
 - $= 32 + 1023 = 1055 = 41F_{16}$
- Mantissa

$$=.4375_{10} = .0111_2 = 7_{16}$$

6,174,015,488

15-Oct-2001

CSE 410 - Number Formats

Roundoff Error

• Adding a very small floating point number to a very large floating point number may not have any effect

- any one number has only 53 significant bits

• Adding a number with a fractional part to another number over and over will probably never yield an exactly integer result

- so don't use floating point loop indexes

Loss of precision

 $\frac{1101\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ =\ 1.101_2\ x\ 2^{15}$ $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 1101\ =\ 1.101_2\ x\ 2^{-13}$

- These are not unusual numbers 53248 and 0.0001983642578125
- Very few bits of mantissa required
- But their sum requires a mantissa with at least <u>32 bits</u> or there will lost significant bits