
Number Formats

CSE 410 - Computer Systems

October 15, 2001

15-Oct-2001 CSE 410 - Number Formats 2

Readings and References

• Reading
– Sections 4.1 through 4.4, 4.8 through page 280, 4.11, 4.12,

Patterson and Hennessy, Computer Organization & Design

• Other References

15-Oct-2001 CSE 410 - Number Formats 3

Signed Numbers

• We have already talked about unsigned
binary numbers
– each bit position represents a power of 2

– range of values is 0 to 2n-1

• How can we indicate negative values?
– two states: positive or negative

– a binary bit indicates one of two states: 0 or 1

⇒ use one bit for the sign bit

15-Oct-2001 CSE 410 - Number Formats 4

Where is the sign bit?

• Could use an additional bit to indicate sign
– each value would require 33 bits

– would really foul up the hardware design

• Could use any bit in the 32-bit word
– any bit but the left-most (high order) would

complicate the hardware tremendously

• The high order bit (left-most) is the sign bit
– remaining bits indicate the value

15-Oct-2001 CSE 410 - Number Formats 5

Format of 32-bit signed integer

1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sign bit
(1 bit)

numeric value
(31 bits)

• Bit 31 is the sign bit
– 0 for positive numbers, 1 for negative numbers

– aka most significant bit (msb), high order bit

... 031 ...

15-Oct-2001 CSE 410 - Number Formats 6

Example: 4-bit signed numbers

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1 0 1 0

sign bit
(1 bit)

numeric value
(3 bits)

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

Hex Bin
Unsigned
Decimal

-1
-2
-3
-4
-5
-6
-7
-8
7
6
5
4
3
2
1
0

Signed
Decimal

15-Oct-2001 CSE 410 - Number Formats 7

• Note special arrangement of negative values

• One zero value, one extra negative value

• The representation is exactly what you get
by doing a subtraction

Two’s complement notation

1
- 7

-6

0001
- 0111

1010

BinaryDecimal

15-Oct-2001 CSE 410 - Number Formats 8

Why “two’s” complement?

• In an n-bit word, negative x is represented
by the value of 2n-x

• 4-bit example
24 = 16. What is the representation of -6?

10000
- 0110

1010

Binary

16
- 6

10

Decimal

15-Oct-2001 CSE 410 - Number Formats 9

Negating a number

• Given x, how do we represent negative x?
 negative(x) = 2n-x

and x+complement(x) = 2n-1

so negative(x) = 2n-x = complement(x)+1

• The easy shortcut
– write down the value in binary

– complement all the bits

– add 1

15-Oct-2001 CSE 410 - Number Formats 10

Example: the negation shortcut

 decimal 6 = 0110 = +6
complement = 1001
 add 1 = 1010 = -6

decimal -6 = 1010 = -6
complement = 0101
 add 1 = 0110 = +6

15-Oct-2001 CSE 410 - Number Formats 11

Signed and Unsigned Compares

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

Hex Bin
Unsigned
Decimal

-1
-2
-3
-4
-5
-6
-7
-8
7
6
5
4
3
2
1
0

Signed
Decimal add $t0,$zero,-1

li $t1,7

slt $t2,$t0,$t1 # t2 = 1

sltu $t3,$t0,$t1 # t3 = 0

Note: using 4-bit signed
numbers in this example.
The same relationships exist
with 32-bit signed values.

15-Oct-2001 CSE 410 - Number Formats 12

• Unsigned: lbu $reg, a($reg)

– the byte is 0-extended into the register

Loading bytes

0000 0000

• Signed: lb $reg, a($reg)

– bit 7 is extended through bit 31

0000 0000 0000 0000 xxxx xxxx

0000 0000 0000 0000 0000 0000 0xxx xxxx

1111 1111 1111 1111 1111 1111 1xxx xxxx

15-Oct-2001 CSE 410 - Number Formats 13

Why Floating Point?

• The numbers we have talked about so far
have all been integers in the range 0 to 4B
or -2B to +2B

• What about numbers outside that range?
– population of the planet: 6 billion+

• What about numbers that have a fractional
part in addition to the integer part?
– π = 3.1415926535...

15-Oct-2001 CSE 410 - Number Formats 14

Could use scaling to get fractions

• Assume that every numeric value in
memory was scaled by a factor of 1000
3000 => represents 3.000

3010 => represents 3.010

• Problems
– one scale factor for all numbers?

– impossible to choose one “best” scale factor for
all numbers that we might want to represent

15-Oct-2001 CSE 410 - Number Formats 15

A scale factor for each number

• This is the same as scientific notation
– 6 x 109, 3.1415926535 x 100

• A floating point number contains two parts
– mantissa (or significand): the value

– exponent: the exponent of the scale factor

• Normalized form
– a non-zero single digit before the decimal point

15-Oct-2001 CSE 410 - Number Formats 16

“Binary scientific notation”

• The computer only stores binary numbers
– So we use powers of 2 rather than 10

– Normalized numbers have a leading 1

• 6,000,000,000 = 6.0 x 109

– 1.396983861910 x 232

• π ≅ 3.141592653589793238462643383
– 1.57079632679489661923132169163975 x 21

15-Oct-2001 CSE 410 - Number Formats 17

Storage format: fixed width fields

• How big can the exponent be?
– what is the range it represents?

• How big can the mantissa be?
– what are the values it represents?

• We have to select a storage format and
allocate specific fields to various purposes
– single precision: one 32-bit word

– double precision: two 32-bit words

15-Oct-2001 CSE 410 - Number Formats 18

IEEE 754 Standard

• Chaos in the 70s and 80s as each system
designer chose new formats and rules

• IEEE 754 standard
– format of the fields

– rounding: up, down, towards 0, nearest

– exceptional values: ±infinity, NaN (not a number)

– action to take on exceptional values

15-Oct-2001 CSE 410 - Number Formats 19

Floating Point Storage

• Single Precision
– one word (32 bits)

• Double Precision
– two words (64 bits)

– the order of the words depends on endianness
of the machine being used

• Defined by IEEE 754

15-Oct-2001 CSE 410 - Number Formats 20

Single Precision Format

exponents mantissa

8 bits 23 bits

0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

15-Oct-2001 CSE 410 - Number Formats 21

Double Precision Format

exponents mantissa (high order bits)

11 bits 20 bits

0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

mantissa (low order bits)

0 0

32 bits

15-Oct-2001 CSE 410 - Number Formats 22

Double Precision Mantissa Fields

• Sign bit
– 1 bit sign for the value

• Mantissa
– 52 bits for the value

– by definition, the leading digit is always a 1

– so we don’t need to actually store it

– and we actually have 53 bits of information

15-Oct-2001 CSE 410 - Number Formats 23

Double Precision Exponent Field

• Field range
– 11 bits: range 211 = 2048 possible values

• Special values
– exponent = 2047 ⇒ value=special (inf, NaN)

– exponent = 0 ⇒ value=0

15-Oct-2001 CSE 410 - Number Formats 24

Biased Notation

• Need exponent range - negative and positive

• If positive exponents are bigger numbers than
the negative exponents, then floating point
numbers can be sorted as integers

• Exponent is stored as (E+1023)
– most positive exponent is +1023 (stored as 2046)

– most negative exponent is -1022 (stored as 1)

– this is not two’s complement notation

15-Oct-2001 CSE 410 - Number Formats 25

Example: 6,174,015,488

• 6174015488

= 6.174015488 x 109 = 1.437510 x 232

• Exponent

= 32+1023 = 1055 = 41F16

• Mantissa

= .437510 = .01112 = 716

15-Oct-2001 CSE 410 - Number Formats 26

6,174,015,488

exponents mantissa (high order bits)

11 bits 20 bits

0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

mantissa (low order bits)

0 0

32 bits

hex: 4 1 F 7 0 0 0 0

15-Oct-2001 CSE 410 - Number Formats 27

Roundoff Error

• Adding a very small floating point number
to a very large floating point number may
not have any effect
– any one number has only 53 significant bits

• Adding a number with a fractional part to
another number over and over will probably
never yield an exactly integer result
– so don’t use floating point loop indexes

15-Oct-2001 CSE 410 - Number Formats 28

Loss of precision

1101 0000 0000 0000.0000 0000 0000 0000 = 1.1012 x 2
15

0000 0000 0000 0000.0000 0000 0000 1101 = 1.1012 x 2
-13

• These are not unusual numbers
 53248 and 0.0001983642578125

• Very few bits of mantissa required

• But their sum requires a mantissa with at
least 32 bits or there will lost significant bits

