
1

Addressing, Complete Example

CSE 410 - Computer Systems
October 12, 2001

12-Oct-2001 CSE 410 - Addressing 2

Readings and References

• Reading
– Sections 3.7 through 3.10, A.1 through A.4, Patterson and

Hennessy, Computer Organization & Design

• note error in figure page 149, address 80012 repeated

• Other References
– Sun demo of QuickSort vs BubbleSort
<http://java.sun.com/applets/ jdk/1.1/demo/SortDemo/example1.html>

12-Oct-2001 CSE 410 - Addressing 3

Beyond Numbers

• “Most computers today use 8-bit bytes to
represent characters”

• How many characters can you represent in
an 8-bit byte?
– 256

• How many characters are needed to
represent all the languages in the world?
– a gazillion, approximately

12-Oct-2001 CSE 410 - Addressing 4

char

• American Standard Code for Information
Interchange (ASCII)
– published in 1968
– defines 7-bit character codes ...
– which means only the first 128 characters
– after that, it’s all “extensions” and “code pages”

• ISO 8859-x
– codify the extensions to 8 bits (256 characters)

12-Oct-2001 CSE 410 - Addressing 5

ISO 8859-x

• Each “language” defines the extended chars
– Latin1 (West European) , Latin2 (East

European), Latin3 (South European), Latin4
(North European), Cyrillic, Arabic, Greek,
Hebrew, Latin5 (Turkish), Latin6 (Nordic)

– see http://czyborra.com/charsets/iso8859.html

• How many languages are there?
– a gazillion, approximately

12-Oct-2001 CSE 410 - Addressing 6

Unicode

• Universal character encoding standard
– http://www.unicode.org/

• 16 bits should cover just about everything ...
– “original goal was to use a single 16-bit

encoding that provides code points for more
than 65,000 characters”

– the Java char type is a 16-bit character

• How many characters are needed? ...

2

12-Oct-2001 CSE 410 - Addressing 7

Unicode does a million

unicode scalar value:

a number N from 0 to 10FFFF16 (1,114,11110)

12-Oct-2001 CSE 410 - Addressing 8

Some character URLs

• ANSI X3.4 (ASCII)
– http://czyborra.com/charsets/iso646.html

• ISO 8859 (International extensions)
– http://czyborra.com/charsets/iso8859.html

• Unicode
– http://www.unicode.org/
– http://www.unicode.org/iuc/iuc10/x-utf8.html

12-Oct-2001 CSE 410 - Addressing 9

Moving bytes

• A byte can contain an 8-bit character
• A byte can contain really small numbers

0 to 25510 or -12810 to 12710

• Sign extension desired effect:
– sign bit not extended for characters
– sign bit extended for numbers

12-Oct-2001 CSE 410 - Addressing 10

• Unsigned: lbu $reg, a($reg)

– the byte is 0-extended into the register

Loading bytes

0000 0000

• Signed: lb $reg, a($reg)

– bit 7 is extended through bit 31

0000 0000 0000 0000 xxxx xxxx

0000 0000 0000 0000 0000 0000 0xxx xxxx

1111 1111 1111 1111 1111 1111 1xxx xxxx

12-Oct-2001 CSE 410 - Addressing 11

• No sign bit considerations
– the right most byte in the register is jammed

into the byte address given
– sb $t0, 2($sp)

Storing bytes

0000 0000 0000 00000000 0000xxxx xxxx0x7FFFEFFC
0123

0000 0000 0000 0000 0000 0000 xxxx xxxx$t0

$sp

12-Oct-2001 CSE 410 - Addressing 12

Storing strings

• Counted strings (for example Pascal strings)
– byte str[0] holds length: max 255 char

• Counted strings (for example Java strings)
– int variable holds length: max 2B char

• Terminated strings (for example C strings)
– no length variable, must count: max n/a

3

12-Oct-2001 CSE 410 - Addressing 13

strcpy example

char *strcpy(char *dst, const char *src) {
char *s = dst;
while ((*dst++ = *src++) != '\0')
 ;
return s;

}

• prototype matches libc
• pointers, not arrays
• better loop

12-Oct-2001 CSE 410 - Addressing 14

strcpy compiled

strcpy:
 move $v1,$a0 # remember initial dst
loop:
 lbu $v0,0($a1) # load a byte
 sb $v0,0($a0) # store it
 sll $v0,$v0,24 # toss the extra bytes
 addu $a1,$a1,1 # src++
 addu $a0,$a0,1 # dst++
 bne $v0,$zero,loop # loop if not done
 move $v0,$v1 # return initial dst
 j $ra # return

12-Oct-2001 CSE 410 - Addressing 15

Manipulating the bits

• Shift Logical
– sll, srl, sllv, srlv - shift bits in word, 0-extend
– use these to isolate bits in a word
– shift amount in instruction or in register

• Bit by bit
– and, andi - clear bits in destination
– or, ori - set bits in destination

12-Oct-2001 CSE 410 - Addressing 16

Example: bit manipulation

0000 0000 0000 0000 0000 1111 1010 1111
1010 1111 0000 0000 0000 0000 0000 0000

1010 1111 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 1010

0000 0000 0000 0000 0000 0000 0000 1010
0000 0000 0000 0000 0000 0001 0000 1010

sll $t1,$t1,24

srl $t1,$t1,28

ori $t1,$t1,0x100

12-Oct-2001 CSE 410 - Addressing 17

• Example in the book on page 229 is a
typical application of bit fields

• But, note poor choice of field locations
– the received byte is not aligned
– the byte must be shifted before it can be used

• To: EE designers of interfaces
– please consider alignment when selecting fields

Example: C bit fields

... unused ... received byte e r

12-Oct-2001 CSE 410 - Addressing 18

Multiply and Divide

• There is a separate integer multiply unit
• Use pseudo-instructions to access

mul $t0,$t1,$t2 # t0 = t1*t2
div $t0,$t1,$t2 # t0 = t1/t2

• These are relatively slow
– multiply 5-12 clock cycles
– divide 35-80 clock cycles

4

12-Oct-2001 CSE 410 - Addressing 19

Addressing modes

• Register jr $ra

• Offset + Register lw $t0,0($sp)

• Immediate addi $t0,17

• PC relative bnez $t0,loop

• Pseudodirect jal proc

12-Oct-2001 CSE 410 - Addressing 20

Register only

• Use the 32 bits of the specified register as
the desired address

• Can specify anywhere in the program
address space, without limitation

• jr $ra

– return to caller after procedure completes

12-Oct-2001 CSE 410 - Addressing 21

Offset + Register

• Specify 16-bit signed offset to add to the
base register

• Transfer (lw, sw) base register is specified
– lw $t0,4($sp)
– sw $t0,40($gp)

12-Oct-2001 CSE 410 - Addressing 22

Immediate

• The 16-bit field holds the constant value
0x34080001 ori $8, $0, 1 ; 4: li $t0,1
0x3c01ffff lui $1, -1 ; 5: li $t0,-1
0x3428ffff ori $8, $1, -1
0x3408ffff ori $8, $0, -1 ; 6: li $t0,0xFFFF
0x3c010001 lui $1, 1 ; 7: li $t0,0x1FFFF
0x3428ffff ori $8, $1, -1
0x3c015555 lui $1, 21845 ; 8: li $t0,0x5555AAAA
0x3428aaaa ori $8, $1, -21846
0x3c010040 lui $1, 64 [main] ; 9: la $t0,main
0x34280020 ori $8, $1, 32 [main]

12-Oct-2001 CSE 410 - Addressing 23

PC relative

• Branch (beq, bne) base register is PC
– beq $t0,$t1,skip

• The 16-bit value stored in the instruction is
considered to be a word offset
– multiplied by 4 before adding to PC
– can branch over ± 32 K instruction range

12-Oct-2001 CSE 410 - Addressing 24

Pseudodirect

• The specified offset is 26 bits long
– Considered to be a word offset
– multiplied by 4 before use

• The top 4 bits of the PC are concatenated
with the new 28 bit offset to give a 32-bit
address

• Can jump within 256 MB segment

5

12-Oct-2001 CSE 410 - Addressing 25

Starting a Program

• Two phases from source code to execution
• Build time

– compiler creates assembly code
– assembler creates machine code
– linker creates an executable

• Run time
– loader moves the executable into memory and

starts the program
12-Oct-2001 CSE 410 - Addressing 26

Build Time

• You’re experts on compiling from source to
assembly and hand crafted assembly

• Two parts to translating from assembly to
machine language:
– Instruction encoding (including translating

pseudoinstructions)
– Translating labels to addresses

• Label translations go in the symbol table

12-Oct-2001 CSE 410 - Addressing 27

Symbol Table

• Symbols are names of global variables or labels
(including procedure entry points)

• Symbol table associates symbols with their
addresses in the object file

• This allows files compiled separately to be linked

0x10006000bigArray

0x01031ff0LabelA:

12-Oct-2001 CSE 410 - Addressing 28

Modular Program Design

• Small projects might use only one file
– Any time any one line changes, recompile and

reassemble the whole thing (death of Pascal)
• For larger projects, recompilation time and

complexity management is significant
• Solution: split project into modules

– compile and assemble modules separately
– link the object files

12-Oct-2001 CSE 410 - Addressing 29

The Compiler + Assembler

• Translate source files to object files
• Object files

– Contain machine instructions (1’s & 0’s)
– Bookkeeping information

• Procedures and variables the object file defines
• Procedures and variables the source files use but are

undefined (unresolved references)
• Debugging information associating machine

instructions with lines of source code

12-Oct-2001 CSE 410 - Addressing 30

The Linker

• The linker’s job is to “stitch together” the
object files:
1. Place the data modules in memory space
2. Determine the addresses of data and labels
3. Match up references between modules

• Creates an executable file

6

12-Oct-2001 CSE 410 - Addressing 31

Determining Addresses

• Some addresses change during memory layout
• Modules were compiled in isolation
• Absolute addresses must be relocated
• Object file keeps track of instructions that use

absolute addresses

text
text

12-Oct-2001 CSE 410 - Addressing 32

Resolving References

• For example, in a word processing program,
an input module calls a spell check module

• Module address is unresolved at compile time
• The linker matches unresolved symbols to

locations in other modules at link time
• In SPIM, “main” is resolved when your

program is loaded

12-Oct-2001 CSE 410 - Addressing 33

Linker Example
code:

main:A=area(5.0)
static data:

PI = 3.1415
defined symbols:

main, PI
undefined symbols:

Area

code:
Area:return PI*r*r

static data:

defined symbols:
Area

undefined symbols:
PI

main.o area.o

header
code: main:A=area(5.0)
 Area:return PI*r*r
static data: PI = 3.1415
defined symbols: main, PI, Area

main.exe

12-Oct-2001 CSE 410 - Addressing 34

Libraries

• Some code is used so often, it is bundled
into libraries for common access

• Libraries contain most of the code you use
but didn’t write: e.g., printf()

• Library code is (often) merged with yours at
link time

main.o

libc.a
 main.exe

12-Oct-2001 CSE 410 - Addressing 35

The Executable

• End result of compiling, assembling, and
linking: the executable
– Header, listing the lengths of the other

segments
– Text segment
– Static data segment
– Potentially other segments, depending on

architecture & OS conventions

12-Oct-2001 CSE 410 - Addressing 36

Run Time

• When a program is started ...
– Some dynamic linking may occur

• some symbols aren’t defined until run time
• Windows’ dlls (dynamic link library)

– The segments are loaded into memory
– The OS transfers control to the program and it

runs
• We’ll learn a lot more about this during the

OS part of the course

7

12-Oct-2001 CSE 410 - Addressing 37

QuickSort example

• QuickSort vs BubbleSort
– don’t ever use a bubble sort, many better sort

routines are available as source or library files

• The example QuickSort.c is taken from the
Java example on the Sun demo page

• I converted it to C and compiled with gcc
• Helpful to review register usage, stack

allocation, branching techniques

