
Procedure Detail

CSE 410 - Computer Systems
October 10, 2001

10-Oct-2001 CSE 410 - Procedures Part 2 2

Readings and References

• Reading

• Other References
– D. Sweetman, See MIPS Run, Morgan Kauffman, Publishers

• Chapter 10, C Programming on MIPS

10-Oct-2001 CSE 410 - Procedures Part 2 3

Leaf procedures

• A leaf procedure is one that does not call
another procedure

• Relatively simple register usage since the
procedure doesn’t call anyone else

• Little or no memory access requirements
because you are not saving and restoring as
many registers from the stack

10-Oct-2001 CSE 410 - Procedures Part 2 4

Non-leaf procedure

• A non-leaf procedure is one that calls
another procedure

• You must save at least register $ra, since
that register is overwritten by the jal when
you call another procedure

10-Oct-2001 CSE 410 - Procedures Part 2 5

Calling tree
main:
…
jal procA
…
j $ra

procA:
…
jal procB
…
j $ra

procB:
…
jal procC
…
j $ra

procC:
…
j $ra

Leaf

Non-leaf

10-Oct-2001 CSE 410 - Procedures Part 2 6

Layout of stack frame (little leaf)

towards 0

argument build area
(if needed)

saved registers
(if needed)

argument build area
(not needed)

procA:
 subu $sp,$sp,xx
 ...

$sp (on entry)

st
ac

k
fr

am
e

local variables
(if needed)

10-Oct-2001 CSE 410 - Procedures Part 2 7

Layout of stack frame (big leaf)

towards 0

argument build area
(if needed)

saved registers
(if needed)

argument build area
(not needed)procA:

 subu $sp,$sp,xx
 ...

$sp (on entry)

$sp (after subu)

st
ac

k
fr

am
e

local variables
(if needed)

10-Oct-2001 CSE 410 - Procedures Part 2 8

Layout of stack frame (non-leaf)

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(maximum needed)

procA:
 subu $sp,$sp,xx
 ...

$sp (on entry)

$sp (after subu)

st
ac

k
fr

am
e

10-Oct-2001 CSE 410 - Procedures Part 2 9

Little leaf example - swap.c

/* Swap two integer array elements */

void swap(int a[], int i, int j)
{
 int T;
 T = a[i];
 a[i] = a[j];
 a[j] = T;
}

10-Oct-2001 CSE 410 - Procedures Part 2 10

Little leaf example - swap.s

swap:
 sll $a1,$a1,2 # $a1 = 4*i
 addu $a1,$a1,$a0 # $a1 = addr(a[i])
 lw $v1,0($a1) # $v1 = a[i]
 sll $a2,$a2,2 # $a2 = 4*j
 addu $a2,$a2,$a0 # $a2 = addr(a[j])
 lw $v0,0($a2) # $v0 = a[j]
 sw $v0,0($a1) # a[i] = old a[j]
 sw $v1,0($a2) # a[j] = old a[i]
 j $ra # return

10-Oct-2001 CSE 410 - Procedures Part 2 11

Non-leaf example - QuickSort.c

void QuickSort(int a[], int lo0, int hi0)
{
 int lo = lo0;
 int hi = hi0;
 int mid;

 if (hi0 > lo0)
 {
 ...

10-Oct-2001 CSE 410 - Procedures Part 2 12

Non-leaf example - QuickSort.s
QuickSort:
 subu $sp,$sp,48 # create stack frame
 sw $ra,40($sp) #
 sw $s5,36($sp) #
 sw $s4,32($sp) #
 sw $s3,28($sp) #
 sw $s2,24($sp) #
 sw $s1,20($sp) #
 sw $s0,16($sp) #
 move $s3,$a0 # $s3 = address(a)
 move $s5,$a1 # $s5 = lo0
 ...

10-Oct-2001 CSE 410 - Procedures Part 2 13

Layout of QuickSort stack frame

towards 0

argument build area
(if needed)

QuickSort:
 subu $sp,$sp,48
 ...

$sp (on entry)

$sp (after subu)

st
ac

k
fr

am
e

 0

 4

 8

12

16

20

24

28

32

36

40

44 not used

$ra

$s5

$s4

$s3

$s2

$s1

$s0

argument build area
for recursive call

saved registers

10-Oct-2001 CSE 410 - Procedures Part 2 14

$ra - Return Address
• Return address register

– written with jal, jalr instructions

– must be saved if procedure calls another

QuickSort:
 subu $sp,$sp,48 # create stack frame
 sw $ra,40($sp) #
 . . .
 lw $ra,40($sp) # restore from stack …
 addu $sp,$sp,48 #
 j $ra # return

10-Oct-2001 CSE 410 - Procedures Part 2 15

$fp - Frame Pointer

• Frame pointer points to the largest address
in the stack frame

• Stack pointer points to the smallest address
in the stack frame
– no advantage to $fp if $sp does not change

during procedure’s execution

• Consider $fp to be $s8
– save and restore required if you use it

10-Oct-2001 CSE 410 - Procedures Part 2 16

Layout of stack frame (with $fp)

towards 0

argument build area
(if needed)

saved registers
(if needed)

local variables
(if needed)

argument build area
(maximum needed)

procA:
 subu $sp,$sp,xx
 ...

$sp (on entry)

$sp (after subu)

st
ac

k
fr

am
e

$fp (after save and set)

10-Oct-2001 CSE 410 - Procedures Part 2 17

$s0-$s7 - Save and Restore

• These registers are available for unlimited
use

• Must save immediately on procedure entry
and restore just before procedure exit if you
are going to use them

• As a result of this convention, the registers
will have the same values after a procedure
call as they had before

10-Oct-2001 CSE 410 - Procedures Part 2 18

$t0-$t9 - Temporary registers

• Use however you like
• No save and restore required or expected

• As a result of this convention, the registers
have no guaranteed values when you get
back from calling another procedure

10-Oct-2001 CSE 410 - Procedures Part 2 19

$a0-$a3 , $v0-$v1 - Args/Return

• The argument registers can be changed in a
procedure without restriction

• No guarantee that they will be the same
upon return from a called procedure

• The result registers will contain whatever
the function prototype says they will
– undefined value in $v1 if not used for return

10-Oct-2001 CSE 410 - Procedures Part 2 20

$gp - Global Pointer

• Initialized so that it points to the middle of a
64KB section of the data segment
– address 0x10008000

• Variables placed in this section can be
accessed without loading a 32-bit address
– lw $t0,-32768($gp)

• Assembler directive
– .extrn symbol bytecount

10-Oct-2001 CSE 410 - Procedures Part 2 21

Layout of program memory

reserved (4 MB)
0000 0000

003F FFFF

0040 0000

0FFF FFFF

1000 0000
1000 FFFF

program (252 MB)

Not to
Scale!

 global data (64 KB)

7FFF EFFF stack (grows down)

heap (grows up)1001 0000

~1792 MB

reserved (4KB)7FFF FFFF

10-Oct-2001 CSE 410 - Procedures Part 2 22

Using the global pointer - gp.s

.extern common 4 # global area symbol

.data
local: # non-global symbol

.word 0xAAAA # data value

.text
main:

lw $t0,local # load word
sw $t0,common # store word
j $ra # return

10-Oct-2001 CSE 410 - Procedures Part 2 23

A reference through $gp

 # lw $t0,local
0x3c011001 lui $1, 4097
0x8c280000 lw $8, 0($1)

 # sw $t0,common
0xaf888000 sw $8, -32768($28)

10-Oct-2001 CSE 410 - Procedures Part 2 24

0xAF888000 <=> sw $t0,-32768($gp)

op base src offset

6 bits 5 bits 5 bits 16 bits

A 8 08 0 08F

1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43=sw 28=$gp 8=$t0 0x8000=offset

1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10-Oct-2001 CSE 410 - Procedures Part 2 25

Pearls of wisdom from Sweetman

• These calling conventions can look very
complex
– but partly that’s just appalling documentation

– and the inclusion of debugging conventions

• Most functions that you may write in
assembler for tuning reasons will be leaf
functions
– the declaration of such a function is very simple

