Procedures

CSE 410 - Computer Systems
October 8, 2001

Readings and References
* Reading

— Section 4.2, Signed and Unsigned Numbers, P& H

« another presentation of binary, hex, and decimal

« ignore signed numbers for now, we will cover them next week
— Sections 3.6, A5, A6, P&H

« noteerror in figure 3.13 - $a0-$a3 are not preserved

» Other References

— MIPSpro Assembly Language Programmer’s Guide, document
number 007-2418-001, Silicon Graphics, 1994

gi picg %oll =05308 db=bks& pth =/SGI_Developer>

8-Oct-2001 CSE 410 - Procedures 2

Instructions and Data flow

instructions and
data

program counter
increments by 4
man instructions r%iﬂefssz bits wi de
memory [and data | 32 in number
functional units
i mpl enent i nstructions
8-Oct-2001 CSE 410- Procedures 3

Layout of program memory

7FFF FFEE] Teserved [ARB)
TFFF EFFF stack (grows down) I
+ i
| ~1792 M8 |
| + |
Not to
1001 0000 heap (grows up) Scale!
o0 Beee global data (64 KB)
OFFF FFFF
program (252 MB)
0040 0000
003F FFFF
reserved (4 MB)
0000 0000
8-0ct-2001 CSE 410 - Procedures 4

Why use procedures?

» Sofar, our program isjust one long run of
ingtructions

» Wecan do alot thisway, but the program
rapidly getstoo large to handle easily

* Procedures alow the programmer to
organize the codeinto logical units

8-Oct-2001 CSE 410- Procedures 5

What does a procedure do for us?

A procedure provides awell defined and
reusable interface to a particular capability
— entry, exit, parameters clearly identified

¢ Reducesthelevel of detail the programmer
needs to know to accomplish atask

» Theinternas of afunction can beignored

— messy details can be hidden from innocent eyes
— internals can change without affecting caller

8-0ct-2001 CSE 410- Procedures 6

How do you use a procedure?

set up parameters

transfer to procedure

acquire storage resources

do the desired function

make result availableto caller
return storage resources
return to point of call

8-Oct-2001 CSE 410 - Procedures

o bk bR

~

Calling conventions

* The details of how you implement the steps
for using a procedure are governed by the
calling conventionsbeing used

* Thereis much variation in conventions

— which causes much programmer pain

« Understand the calling conventions of the

system you are writing for
— 032, n32, n64, P&H, cse410, ...

8-Oct-2001 CSE 410 - Procedures 8

1. Set up parameters

» Theregisters are one obvious place to put
parameters for a procedure to read
— very fast and easily referenced

» Many procedures have 4 or less arguments
— $a0, $al, $a2, $a3 are used for arguments

* ... but some procedures have more
—wedon't want to use up all theregisters
— SO we use memory to store the rest

8-Oct-2001 CSE 410 - Procedures

The Stack

* Stack pointer ($sp) pointsto the “top” value
on the stack (ie, the lowest address in use)

e Thereareno “push” or “pop” instructions
— we adjust the stack pointer directly

« stack grows downward towards zero
— subu $sp, $sp, xx : makeroom for more data
— addu $sp, $sp, xx :release spaceon the stack
— note that both subu and addu become addi u

8-Oct-2001 CSE 410- Procedures 10

Dynamic storage on the stack

mai n:
Ja| main subu $sp,$sp,8
L 1 [| 1
1(ssp) [T T 1 0x7fffee0d T T T | 20(ssp)
g(ssp)[T T T 0x7f1fee00 T T T | 16(ssp)
assp) [T T T ox7fffedfc T T T | 12(ssp)
o(ssp) [T T T ox7fffedf8 T 1 8($sp)
ox7fffedf4 L 4(3ep)
ox7fffedfo T T 0($sp)
0x7fffedec
0x7fffedes
Ox7fffeded
NI towardsO o
$sp[OX7TTTedrs] $sp [OX7TTTEdT0]
8-Oct-2001 CSE 410 - Procedures

Layout of stack frame

argument build area

$sp (on entry) =T (if needed)

saved registers
(if needed)

procA:
subu $sp,$sp, xx

local variables
(if needed)

[argument build area

|Je—— stack frame ——|

T (if needed)
$sp (after subuy) — T
towardsO

8-0ct-2001 CSE 410- Procedures 12

Argument build area

» Some calling conventions require that caller
reserve stack space for al arguments
— 16 bytes (4 words) left empty to mirror $ao- $a3
* Other calling conventions require that caller
reserve stack space only for arguments that
donotfitin$ao - $a3
— so argument build areaiis only present if some
arguments didn't fit in 4 registers

8-Oct-2001 CSE 410 - Procedures 13

Agreement

« A procedure and all of the programs that
cdl it must agree on the calling convention

 Thisisone reason why changing the calling
convention for system librariesis abig deal
* Wewill use
— caller reserves stack space for all arguments
— 16 bytes (4 words) left empty to mirror $ao- $a3

8-Oct-2001 CSE 410 - Procedures 14

2. Transfer to procedure

mai n:
subu $sp,$sp,8

jal main

1 1 1 [1
12($sp) rrr 0x7fffee04 r rr 20($sp)
8($sp) y re 0x7fffee00 rrT 16($sp)
4($sp) rrr ox7fffedfc rrr 12($sp)
0($sp) r T T 0x7fffedf8 T T 8($sp)
0x7fffedf4 T T 4($sp)
0x7fffedf0 L 0($sp)
0x7fffedec
0x7fffede8
0x7fffede4d
Vo towardsO Voo
4
$sp[OXTTTTede] $sp [OXTTTTed10]
8-Oct-2001 CSE 410 - Procedures 15

Jump and link

e Jump
— can take you anywhere within the currently
active 256 MB segment

e Link
— store return addressin $ra
— note: this overwrites current value of fra

8-Oct-2001 CSE 410- Procedures 16

3. Acquire storage resources

+ argument build area

$sp (on entry) — T (if needed)

saved registers
(if needed)

local variables
(if needed)

argunent build area
(i f needed)

P
|4— stack frame —vl

$sp (after subu) — T

T

towards0

8-Oct-2001 CSE 410- Procedures 17

3a. Savedregisters

e Thereisonly one set of registers
— If called procedure unexpectedly overwrites
them, caller will be surprised and distressed
» Ancther agreement

— called procedure can change $a0-$a3, $v0-$v1,
$t0-$t9 without restoring original vaues

— called procedure must save and restore value of
any other register it wants to use

8-0ct-2001 CSE 410- Procedures 18

Register numbers and names

number name usage
0 zero always returns 0
1 at reserved for use as assembler temporary
2-3 vo, vi values returned by procedures
4-7 a0-a3 first few procedure arguments
8-15, 24, 25 t0-t9 temps - can use without saving
16-23 s0-s7 temps - must save before using
26, 27 k0, k1 reserved for kernel use - may change at any time
28 ap global pointer
29 sp stack pointer
30 fp or s8 frame pointer
31 ra return address from procedure
8-Oct-2001 CSE 410- Procedures 19

3b. Local variables

« |f the called procedure needs to store values
in memory whileit is working, space must
be reserved on the stack for them

« Debugging note
— compiler can often optimize so that all variables

fit in registers and are never stored in memory
— so amemory dump may not contain al values
— use switches to turn off optimization (but ...)

8-Oct-2001 CSE 410 - Procedures 20

3c. Argument build area

* Our convention is
— caller reserves stack space for al arguments
— 16 bytes (4 words) left empty to mirror $ao- $a3
» If your procedure does more than one call to
other procedures, then ...

— the argument build area must be large enough
for the largest set of arguments

8-Oct-2001 CSE 410 - Procedures 21

Using the stack pointer

* Adjust it onceon entry, once on exit

— Initial adjustment should include al the space
you will need in this procedure

« Remember that aword is 4 bytes

— s0 expect to seereferences likes($sp), 20($sp)
» Keep stack pointer double word aigned

— adjust by multiples of 8

8-Oct-2001 CSE 410- Procedures 22

4. Do thedesired function

* You have saved the values of the registers
that must be preserved acrossthe call

» Theargumentsarein $a0 - $a3 or on the
stack

The stack pointer pointsto the end of your
stack frame

o Let‘errip

8-Oct-2001 CSE 410- Procedures 23

5. Makeresult availableto caller

* Registers $v0 and $v1 are available for this
 Most procedures put a 32-hit valuein $v0
 Returning the address of avariable?

— be very careful!

— your portion of the stack isinvalid as soon as
you return

— the object must be allocated in ancestor’ s part
of stack or globally allocated

8-0ct-2001 CSE 410- Procedures 24

6. Return storage resources

argunent build area
(i f needed)

$sp (after addu) —>

|4— stack frame —vl

$sp (while executing) —

towards0

8-Oct-2001 CSE 410 - Procedures 25

7. Return to point of call

¢ Jump through register

» The address of the instruction following the
jump and link was put in $rawhen we were
caled (the“link” in jump and link)

» We have carefully preserved rawhilethe
procedure was executing

* So,“jr $ra” takesusright back to caller

8-Oct-2001 CSE 410 - Procedures 26

CSE 410 Calling Conventions

e Argument build area
— caller reserves stack space for al arguments
— 16 bytes (4 words) left empty to mirror sao- $a3
« Cdled procedure adjusts stack pointer once
on entry, once on exit, in units of 8 bytes
* Registers
— not required to save and restore t0-$t9, $a0-$a3
— must save and restore $s0-s8, $raif changed
— function results returned in $v0, $v1

8-Oct-2001 CSE 410 - Procedures 27

