
1

Decision making, SPIM intro

CSE 410 - Computer Systems
October 5, 2001

5-Oct-2001 CSE 410 - Decisions and SPIM 2

Readings and References

• Reading
– P&H: Sections 3.5, A.9, A.10 through page A-54

5-Oct-2001 CSE 410 - Decisions and SPIM 3

<rant>goto considered harmful</rant>

• “Oh what a tangled web we weave, When
first we practice to deceive!”
– Sir Walter Scott

• Branching in assembly language can turn
your program into a rat’s nest that cannot be
debugged

• Keep control flow simple and logical
• Use comments describing the overall logic

5-Oct-2001 CSE 410 - Decisions and SPIM 4

Conditional Branch

yes

no

?

...

...

...

...

A change in the
program’s flow of

control that depends
on some condition

5-Oct-2001 CSE 410 - Decisions and SPIM 5

Branch instructions

• Branch instructions are I-format instructions
– op code field
– two register fields
– 16-bit offset field

• Simplest branches check for equality
– beq $t0, $t1, address
– bne $t0, $t1, address

5-Oct-2001 CSE 410 - Decisions and SPIM 6

Go to where?

• Calculating the destination address
– 4*(the 16-bit offset value)
– is added to the Program Counter (PC)

• The offset is a word offset in this case
• The base register is always the PC, so we

don’t need to specify it in the instruction
• Covers a range of 216 words (64 KW)

2

5-Oct-2001 CSE 410 - Decisions and SPIM 7

if (i==j) then a=b;

• Assume all values are in registers
• Note that the test is inverted!

$t0=i, $t1=j, $s0=a, $s1=b

bne $t0, $t1, skip
move $s0, $s1

skip:

5-Oct-2001 CSE 410 - Decisions and SPIM 8

while (s[i]==k) i = i+j;

$s0=addr(s), $v1=i, $a0=k, $a1=j

loop:
sll $v0,$v1,2 # v0 = 4*i
addu $v0,$s0,$v0 # v0 = addr(s[i])
lw $v0,0($v0) # v0 = s[i]
addu $v1,$v1,$a1 # i = i+j
beq $v0,$a0,loop # loop if equal
subu $v1,$v1,$a1 # i = i-j

5-Oct-2001 CSE 410 - Decisions and SPIM 9

 for (i=0; i<10; i++) s[i] = i;

$s0=addr(s), $t1=i
move $t1,$zero # i = 0
loop:

sll $t0,$t1,2 # t0 = i*4
addu $t0,$s0,$t0 # t0 = addr(s[i])
sw $t1,0($t0) # s[i] = i
addu $t1,$t1,1 # i++
slt $t0,$t1,10 # if (i<10) $t0=1
bnez $t0,loop # loop if (i<10)

5-Oct-2001 CSE 410 - Decisions and SPIM 10

Comparison instructions

• For comparisons other than equality
– slt : set less than
– sltu : set less than unsigned
– slti : set less than constant value
– sltiu : set less than unsigned constant

• set t0 to 1 if t1<t2
slt $t0, $t1, $t2

5-Oct-2001 CSE 410 - Decisions and SPIM 11

Pseudo-instructions

• The assembler is your friend and will build
instruction sequences for you

• Original code:
bge $a0,$t1,end # if a0>=t1 skip

• Actual instructions:
slt $at,$a0,$t1 # if a0<t1 at=true
beq $at,$0,end # skip if at==false

5-Oct-2001 CSE 410 - Decisions and SPIM 12

Jump Instructions

• Jump instructions provide longer range than
branch instructions

• 26-bit word offset in J-format instructions
– j : jump
– jal : jump and link (store return address)

• 32-bit address in register jumps
– jr : jump through register
– jalr : jump through register and link

3

5-Oct-2001 CSE 410 - Decisions and SPIM 13

J-format fields

• The word offset value is multiplied by 4 to
create a byte offset
– the result is 28 bits wide

• Then concatenated with top 4 bits of PC to
make a 32 bit destination address

op code word offset

6 bits 26 bits

5-Oct-2001 CSE 410 - Decisions and SPIM 14

Important Jumps

• Jump and link (jal)
– call procedure and store return address in $ra

• Jump through register (jr)
– return to caller using the address in $ra

• We will talk about procedure calls in
excruciating detail next lecture

5-Oct-2001 CSE 410 - Decisions and SPIM 15

SPIM simulator

• SPIM lets you write MIPS assembly
language code and run it on a PC

• We will use an extended version of PCSpim
– 6.3a extensions add file reading and writing

• PCSpim is installed on the machines in the
Math Sciences Computing Center

• You can download it from the web site

5-Oct-2001 CSE 410 - Decisions and SPIM 16

Spim display

• Register panel
– register names and numbers

• Text segment panel
– note jump and link to “main” at [0x00400014]
– your code defines the label “main”

• Data and Stack segment panel
• Message panel

5-Oct-2001 CSE 410 - Decisions and SPIM 18

Context editor

• You can use any text editor you like to write
the source code

• Context editor provided in MSCC
– it has a highlighter for MIPS assembly

language
– it doesn’t try to be a word processor

4

5-Oct-2001 CSE 410 - Decisions and SPIM 19 5-Oct-2001 CSE 410 - Decisions and SPIM 20

hello.s

.data
str:

.asciiz "Hello World\n”

.text
main:

li $v0,4 # print_string code
la $a0,str # addr(str)
syscall # print it

jr $ra # return

