
1

Computer Instructions

CSE 410 - Computer Systems
October 3, 2001

3-Oct-2001 CSE 410 - Computer Instructions 2

Readings and References

• Reading
– Sections 3.1-3.4, Patterson and Hennessy, Computer Organization

& Design

• Other References
– D Sweetman, See MIPS Run, Morgan Kauffman, Publishers

• section 8.5, Instruction encoding

• section 11.6, Endianess

3-Oct-2001 CSE 410 - Computer Instructions 3

A very simple organization

main
memory

functional units

program counter

registers

3-Oct-2001 CSE 410 - Computer Instructions 4

Instructions in main memory

• Instructions are stored in main memory
• Program counter (PC) points to the next

instruction
– All MIPS instructions are 4 bytes long, and so

instruction addresses are always multiples of 4

• Program addresses are 32 bits
– 232 = 4,294,967,296 = 4 GigaBytes (GB)

3-Oct-2001 CSE 410 - Computer Instructions 5

Instructions in memory

0
4
8

12
16
20

... ...

...

instruction
addresses

instruction value

instruction value

3-Oct-2001 CSE 410 - Computer Instructions 6

Some common storage units

byte 8

half-word

word

double word

16

32

64

bitsunit

2

3-Oct-2001 CSE 410 - Computer Instructions 7

Alignment

• An object in memory is “aligned” when its
address is a multiple of its size

• Byte: always aligned
• Halfword: address is multiple of 2
• Word: address is multiple of 4
• Double word: address is multiple of 8
• Alignment simplifies load/store hardware

3-Oct-2001 CSE 410 - Computer Instructions 8

System organization so far

main
memory

functional units

program counter
 increments by 4

registers

instructions and
data

32-bit
instructions

3-Oct-2001 CSE 410 - Computer Instructions 9

Registers

• 32 bits wide
– 32 bits is 4 bytes
– same as a word in memory
– signed values from -231 to +231-1
– unsigned values from 0 to 232-1

• easy to access and manipulate
– on chip, so very fast to access
– 32 registers, so easy to address

3-Oct-2001 CSE 410 - Computer Instructions 10

Register addresses

• 32 general purpose registers
• how many bits does it take to identify a

register?
– 5 bits, because 25 = 32

• 32 registers is a compromise selection
– more would require more bits to identify
– fewer would be harder to use efficiently

3-Oct-2001 CSE 410 - Computer Instructions 11

Register numbers and names

0

1

2-3

4-7

8-15, 24, 25

16-23

26,27

28

29

30

31

zero

at

v0, v1

a0-a3

t0-t9

s0-s7

k0, k1

gp

sp

fp or s8

ra

always returns 0

reserved for use as assembler temporary

values returned by procedures

first few procedure arguments

temps - can use without saving

temps - must save before using

reserved for kernel use - may change at any time

global pointer

stack pointer

frame pointer

return address from procedure

number name usage

3-Oct-2001 CSE 410 - Computer Instructions 12

How are registers used?

• Many instructions use 3 registers
– 2 source registers
– 1 destination register

• For example
– add $t1, $a0, $t0

• add a0 and t0 and put result in t1
– add $t1,$zero,$a0

• move contents of a0 to t1 (t1 = 0 + a0)

3

3-Oct-2001 CSE 410 - Computer Instructions 13

R-format instructions: 3 registers

• 32 bits available in the instruction
• 15 bits for the 5-bit register numbers
• The remaining 17 bits are available for

specifying the instruction
– 6-bit op code - basic instruction identifier
– 5-bit shift amount
– 6-bit function code

3-Oct-2001 CSE 410 - Computer Instructions 14

R-format fields

op code source 1 source 2 dest shamt function

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

• some common R-format instructions
– arithmetic: add, sub, mult, div
– logical: and, or, sll, srl
– comparison: slt (set on less than)
– jump through register: jr

3-Oct-2001 CSE 410 - Computer Instructions 15

Bits are just bits

• The bits mean whatever the designer says
they mean when the ISA is defined

• How many possible 3-register instructions
are there?
– 217 = 131,072
– includes all values of op code, shamt, function

• As the ISA develops over the years, the
encoding tends to become less logical

3-Oct-2001 CSE 410 - Computer Instructions 16

System organization again

main
memory

functional units

program counter
 increments by 4

registers

instructions and
data

32-bit
instructions

32 bits wide
32 in number

implement instructions

3-Oct-2001 CSE 410 - Computer Instructions 17

Transfer from memory to register

• Load instructions
– word: lw rt, address

– half word: lh rt, address
lhu rt, address

– byte: lb rt, address
lbu rt, address

• signed load => sign bit is extended into the
upper bits of destination register

• unsigned load => 0 in upper bits of register
3-Oct-2001 CSE 410 - Computer Instructions 18

Transfer from register to memory

• Store instructions

– word: sw rt, address

– half word: sh rt, address

– byte: sb rt, address

4

3-Oct-2001 CSE 410 - Computer Instructions 19

The “address” term

• There is one basic addressing mode:
offset + base register value

• Offset is 16 bits (± 32 KB)
• Load word pointed to by s0, add t1, store

lw $t0,0($s0)
add $t0,$t0,$t1

sw $t0,0($s0)

3-Oct-2001 CSE 410 - Computer Instructions 20

I-format fields

• The contents of the base register and the
offset value are added together to generate
the address for the memory reference

• Can also use the 16 bits to specify an
immediate value, rather than an address

op code base reg src/dest offset or immediate value

6 bits 5 bits 5 bits 16 bits

3-Oct-2001 CSE 410 - Computer Instructions 21

Instructions and Data flow

main
memory

functional units

program counter
 increments by 4

registers

instructions and
data

instructions
and data

32 bits wide
32 in number

implement instructions

3-Oct-2001 CSE 410 - Computer Instructions 22

The eye of the beholder

• Bit patterns have no inherent meaning
• A 32-bit word can be seen as

– a signed integer (± 2 Billion)
– an unsigned integer or address pointer (0 to 4B)
– a single precision floating point number
– four 1-byte characters
– an instruction

3-Oct-2001 CSE 410 - Computer Instructions 23

Big-endian, little-endian

• A 32-bit word in memory is 4 bytes long
• but which byte is which address?
• Consider the 32-bit number 0x01234567

– four bytes: 01, 23, 45, 67
– most significant bits are 0x01
– least significant bits are 0x67

3-Oct-2001 CSE 410 - Computer Instructions 24

Data in memory- big endian

0
4
8
12

... ...

... ...

...

0 1 2 3 byte offsets

01 23 45 67

Big endian - most significant bits are in byte 0 of the word

byte # contents

7 67

6 45

5 23

4 01

5

3-Oct-2001 CSE 410 - Computer Instructions 25

Data in memory- little endian

0
4
8
12

... ...

... ...

...

3 2 1 0 byte offsets

01 23 45 67

Little endian - least significant bits are in byte 0 of the word

byte # contents

7 01

6 23

5 45

4 67

3-Oct-2001 CSE 410 - Computer Instructions 26

Unsigned binary numbers

• Each bit represents a power of 2
• For unsigned numbers in a fixed width field

– the minimum value is 0
– the maximum value is 2n-1, where n is the

number of bits in the field

• Fixed field widths determine many limits
– 5 bits = 32 possible values (25 = 32)
– 10 bits = 1024 possible values (210 = 1024)

3-Oct-2001 CSE 410 - Computer Instructions 27

Binary, Hex, and Decimal

2
0 =
1

2
1 =
2

2
2 =
4

2
3 =
8

2
4 =
1
6

2
5 =
3
2

2
6 =
6
4

2
7 =
1
2
8

2
8 =
2
5
6

Hex16 Decimal10
1 1 0x3 3

1 0 0 1 0x9 9

1 0 1 0 0xA 10

1 1 1 1 0xF 15

0 0 0 0 0x10 161

1 1 1 1 0x1F 311

1 1 1 1 0x7F 127111

1 1 1 1 0xFF 2551111

