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CSE 410 - Computer Systems
Autumn 2001

Final Exam

The final exam will cover material from the entire course, not just the new material since
the midterm.

The exam will be closed book.  No notes, no books, no calculators.  The style of the exam
will be similar to the midterm and the homework assignments.

The exam will be given in our regular classroom, at 8:30 to 10:20, on Wednesday,
December 19.

Review Sheet for the 2nd half of the class

The information in this writeup is intended to help you identify the key points that you
should be comfortable knowing from the second half of the class (since the midterm).
You should review the material I provided before the midterm to refresh your memory
about the first half of the class.

These review sheets are not a complete substitute for the lectures and homework
assignments, and so it is possible that there will be questions on the exam that are not
completely answered by the material on this review sheet or the midterm review sheet.

Operating Systems

Batch systems run jobs with no on-line user interaction.  Multi-programming enables a
system to have more than one job in memory at once, and to switch between jobs when
one is waiting for I/O to disk or tape.  Timesharing adds the ability to switch between
jobs rapidly and at short intervals under control of the OS, thereby enabling interactive
on-line support.  All modern large scale (ie, non-embedded) operating systems implement
time-sharing in one form or another.

Real-time operating systems are generally designed to meet "hard real time" requirements
in which the system must guarantee a response within a fixed amount of time.  Such
operating systems generally do very little (if any) dynamic tuning, and the system
developer is responsible for directly implementing the performance and priority schemes
needed to meet the requirements.  The "soft real time" system is one that can run some
threads at a high priority so that they get to run quickly without much interruption, but
there are no absolute guarantees about performance in such a system.
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Parallelism is supported in many forms. Tightly coupled systems generally have multiple
CPUs on one system board (2, 4, 8 processors are typical) which share memory and can
communicate quickly. A single OS schedules threads on all the CPUs in the system.
Loosely coupled systems generally have a network connecting the system nodes.  The
network can be small and high speed (generally referred to as a clustered system) or it
can be larger and slower (generally referred to as a distributed system). The OS running
on each node schedules threads on that node, perhaps with input from the other nodes.

Processes and Threads

A process is an active instance of a program.  There may be more than one process
running the same program at the same time.  A process defines an address space and
various parameters that the operating system needs such as the associated user, open files,
current working directory, etc.  The word "process" is often used in a general sense to
mean a program running on a computer.  On systems that support multi-threading, the
word process is used to refer to the address space and associated parameters, but not to
the information required for scheduling and executing (such as the priority, program
counter, registers, and stack pointer).  On a multi-threaded system, those data items are
kept on a thread-by-thread basis, and there may be more than one thread per process.  On
a system that does not support multi-threading, scheduling information is kept for each
process.

Creating a new process is considered to be a heavyweight operation.  The address space
must be allocated and registered with the operating system, and all the other control
structures must be allocated and initialized.  Usually, a program file must be read in from
disk and stored in memory when a new process is created.

Threads are the objects that are actually scheduled on a multi-threading system.
Associated with each thread is the information needed to implement a "thread of control."
This includes most particularly a program counter value, a stack pointer value, and values
for all the CPU registers.  The operating system also maintains information associated
with the thread scheduling such as priority, current scheduling state, and various control
parameters.

Threads are considered to be lightweight objects.  Some of the information that the
system needs about a thread is common to all threads in a process, and so that
information is kept at the process level and does not need to be allocated and initialized
when a thread is created.  Also, because threads in one process share a common address
space, they can communicate efficiently using memory without having to go through the
operating system with its associated overhead.

Each of the threads in a process has its own stack.  This means that there are several
sections of memory that are dynamically growing and shrinking, but as long as the area
allocated for each stack is large relative to the amount of space required on the stack
during execution it is not a problem.
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The main benefit of threads is that they provide a relatively easy way to provide
concurrency while not incurring the higher overhead costs associated with parallel
processes.  This concurrency can be used to enhance the responsiveness of interactive
programs, facilitate scheduling on multiple CPUs, and provide parallelism to server
applications that perform a small set of functions for many connected users in parallel.

Threads can be defined and scheduled entirely in the user program (user threads) or they
can be defined and scheduled in the operating system (kernel threads).  The advantage of
user threads is that no operating system involvement is needed when switching threads,
and so scheduling and switching threads can be fairly fast.  The disadvantage is that the
operating system doesn't know that there are multiple threads, and so it is scheduling the
whole process as one unit.  It may make bad decisions such as blocking the whole
process because one thread is blocked for I/O, or running a process even though the only
thread that is able to run is an idle thread.  The advantage of kernel threads is that the OS
can schedule threads individually, regardless of what other threads in the process are
doing.  This allows better scheduling decisions, and also permits threads from one
process to run concurrently on different CPUs in a multi-CPU system.  The disadvantage
of kernel threads is that a trip through the operating system is necessary in order to
perform thread scheduling.

Scheduling

Scheduling is the mechanism by which the operating system decides which task to run
next and for how long.

Switching between tasks is a context switch.  All information needed in order for the new
task to run must change on every context switch, and so this can be a fairly expensive
operation.

On a multi-threaded system with kernel threads the scheduler selects the next thread to
run.  On a system with just user threads or no threading at all, the scheduler selects the
next process to run.  The word "task" is often used as a synonym for "the object being
scheduled" when the distinction between thread and process is not relevant.

The common thread states are ready (can run if there is a processor available), running
(currently has control of a processor), and waiting (waiting for some event such as I/O
completion).  An OS often defines additional states to supplement these for
implementation convenience.  The threads that are in a particular state are kept on
queues. The operating system links the thread information into a queue to record the
current state, and then re-links it to another queue to record a state change.  The thread to
run is selected from one of the ready queues, according to the scheduling algorithm.

The goals of the scheduling algorithm are to maximize throughput and resource
utilization, and to provide good response time, wait time, and turnaround time.  These
goals are often in conflict, and so scheduling is a usually a dynamic process that adjusts
to the workload according to various system tuning settings.
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Preemptive scheduling is implemented by allowing the OS to gain control of the system
on a regular basis using a clock interrupt.  The scheduler selects the next thread to run,
and if it needs to, it can evict the thread that currently has control of the CPU.  This
approach enables the system to control overall system performance.

Non-preemptive scheduling relies on the running thread releasing control of the CPU
voluntarily, either by making an I/O call or by explicitly yielding.  This reduces the
amount of control the system has, but is appropriate in some real time or dedicated
applications where the program design explicitly incorporates knowledge about
scheduling requirements.

CPU-bound tasks tend to use the CPU for long periods with no break for device I/O.  An
I/O-bound task executes relatively few instructions between I/O calls, and can often
complete a processing burst and start another I/O call with just a quick turn as the running
thread. CPU-bound tasks are generally scheduled at a lower priority than I/O-bound tasks
so that system responsiveness is kept relatively high, while maintaining reasonable
throughput.  The I/O referred to here can be to any external device such as a disk, a tape
drive, a keyboard or other user input device, or a network interface.

Most modern scheduling algorithms are a variation on multi-level feedback queues.
There are multiple priority levels, which have associated ready queues.  The scheduler
monitors threads and modifies priorities based on thread behavior, thereby changing the
order and frequency with which threads get access to the CPU.  Priority boosting and
decay are terms describing the changes that the scheduler makes to thread priorities.

Quantum is a word used to describe the length of time a thread is granted access to the
CPU when it is allowed to run.  A scheduler sometimes increases the quantum to allow a
thread more time on the CPU once it is selected to run so that it is more likely to finish
the work it has to do before it gets switched out again.

You should be familiar with the scheduling choices shown on slides 17, 18, and 19 in the
Win2K scheduling lecture of November 21, and be able to answer straightforward
questions based on similar diagrams.

Synchronization

When multiple threads of execution share a block of state information, it is critical that
updates to the shared state be handled sequentially, and not simultaneously.  Since a
thread can be interrupted at any time by the operating system, there are explicit
mechanisms by which threads can coordinate their access to shared state.

A lock provides mutual exclusion.  A thread must acquire the lock before using the
shared state information, and then release the lock when it is done.  In this way, it is
certain that only one thread will have access at a time, because the acquire function will
wait for the lock to be released if necessary.
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An atomic read-modify-write capability is required in order to implement locks.  This
capability is built into the hardware at the instruction level, and guarantees that a thread
can try to acquire a lock and then correctly determine whether or not it succeeded, no
matter when a context switch might happen.

Busy-waiting is the term used to describe having a thread sit in a tight loop, waiting for a
lock to be released.  This is simple to do, but very inefficient in most cases because no
useful work is being done while the loop is executing.

High level constructs that support coordinated access to shared state include locks
(critical section, mutex) and monitors (condition variables).  The basic lock provides
mutual exclusion, but does not provide a good (efficient) way of waiting for changes in
the shared state.

Monitors (condition variables) add the ability to wait for changes in state.  In order to use
a condition variable, a thread acquires the lock that protects the shared state, and checks
the values of interest. If the required condition is not true, then the thread calls the wait
function.  The wait function releases the lock and adds the thread to a wait queue for this
condition.  If the required condition is true, then the thread can perform its task and then
release the lock.  If the thread makes any changes to the shared state, it uses the signal or
broadcast function to indicate that one or all waiting threads should be allowed to run and
check the condition again.  One or all of the waiting threads are made ready, and
eventually run again.  When a waiting thread returns from the wait call, it again has
possession of the associated lock, and can check for the required condition.  The
condition may or may not be true, so it is important that the check and wait be made in a
while loop, rather than a single if statement.

You should be familiar with the use of locks and condition variables in the stack example
from the lecture dated November 28, and be able to answer straightforward questions
based on similar examples.

Deadlocks

In any situation where there are tasks and resources that the tasks need to accomplish
their work, there is the potential for deadlock.  The necessary conditions for deadlock are
mutual exclusion, hold and wait, no preemption, and circular wait.  You should be
familiar with these conditions and be able to discuss solutions for them, given a
description of a deadlocked situation.

Memory Management and Virtual Memory

A program address (or virtual address) is the address that a program uses internally to
reference a location.  A physical address refers to a specific physical location in memory.
On small systems, the two addresses may be the same, but in most systems they are not.
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The ability to decouple the virtual address space as perceived by a running program from
the actual physical memory available is a key benefit of the virtual memory scheme.

Paged allocation and base and bounds allocation are two schemes for allocating memory
to processes.  Be familiar with the diagrams in slides 13, 14, and 16 in the lecture of
December 3, and be able to answer questions about memory allocation based on similar
diagrams.  Be familiar with the diagram on slide 19 of the same lecture showing the use
of a flat page table to translate from a virtual page number to a physical page number.

Bringing a page into memory from disk when it is referenced is called demand paging.  A
page fault occurs, the system determines that the program address is valid but the page is
not in memory, and the OS reads the page in and then restarts the program at the
instruction that caused the fault.  FIFO, RANDOM, OPT (or MIN), LRU, and CLOCK
are all algorithms by which the OS can decide which page should be evicted.  OPT
chooses the page which will not be used for the longest time.  Since this is not something
that we can accurately determine, the LRU and CLOCK algorithms are approximations to
it.

Thrashing occurs when pages are removed from memory but are needed again very
quickly.  The constant eviction and rereading causes a significant slowdown.

It is common for a program to be actively using much less memory than it potentially
might use.  This means that a small working set of pages in memory is often enough to let
a program run efficiently even though the program address space that the program
defines might be much larger.  An example of the difference between active use and
potential use is the allocation of a large virtual address range for a stack, and the small
amount of physical memory that is actually needed during execution for most stacks.
Generally, stacks are allocated a small amount of physical memory initially, and then
expand using page faults and demand paging.

External fragmentation (unused space is not available for allocation because it is broken
up in small pieces) and internal fragmentation (unused space is wasted by being included
in the basic allocation block size) are important considerations in memory management
efficiency.

File Systems

Files are an abstraction that allows us to define and manipulate a collection of bytes on a
storage device.  Each file is listed in a directory.  Files are stored on disk in blocks.
Blocks are the basic allocation unit on a disk, and they are one or more sectors in length.
More sectors per block means that more data can be read per access, and allows larger
file sizes when using fixed size index tables to allocate blocks to files.  Increasing the
block size also increases the internal fragmentation.
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Contiguous allocation means that all the blocks in a file are allocated sequentially in one
track or in several adjacent tracks.  This scheme generally provides fast access, but limits
how files can be located and expanded.

Linked allocation is more flexible in how files are placed on the disk, but requires more
seeking in order to read through the file, is extremely inefficient for random access, and
requires some overhead in each block.

Indexed allocation uses an array of pointers to show which blocks are allocated to a file.
This is generally efficient, although there are issues associated with how big the index
can grow and where the index is actually located on the disk relative to the file.

Operating systems and disk drives use a variety of caching and request scheduling
techniques to reduce the amount of time that the system must wait for the mechanical
time delays (seek time, rotational delay, media transfer time) involved in disk I/O.
Common request scheduling algorithms include Shortest Seek Time First (potential
starvation issue) and SCAN / Circular-SCAN.

Instruction Set Architectures - RISC vs CISC

The instruction set architecture of a machine is another interface or level of abstraction.
The older Complex Instruction Set designs tended to have complex instructions because
the hardware implemented complex operations in an effort to simplify the software
design and increase its speed.  In contrast, the Reduced Instruction Set design philosophy
simplifies the hardware instruction set in order to simplify the hardware design,
specifically to enable pipelining and very rapid execution.  In a RISC architecture, an
increase in the number of instructions is acceptable because of the increase in execution
speed.  The plunging cost of memory has helped make this an acceptable trade-off.
Modern CPUs use the ideas of RISC to implement their instruction sets, either as pure
RISC (for example, MIPS, PowerPC) or as pipelined implementation of legacy
instruction sets (for example, Intel's x86).

Performance Analysis

Don't assume anything, let the numbers tell you what is actually happening.  Good
algorithms are the most powerful tools for improving program performance.  Benchmarks
can be very misleading - make sure you are using metrics that measure your actual
system requirements.  The Standard Performance Evaluation Corp (SPEC) benchmarks
are based on "real world" applications and can be very useful.  Profiling will tell you
where your program is actually spending its time.  Support for profiling is built in to the
CPU itself in most modern designs.


