More on Software Testing

CSE 403 Software Engineering
Winter 2026

Lectures this week

Today: Software testing
* White box testing: code coverage
* Integration testing

Wednesday: Industry guest Tanvi Tiwari, Meta
Question on your takeaway from the talk due Wed

Friday: In-class exercise: code coverage
Assignment due Fri

Motivating example — calculator module

Scenario

 You've inherited responsibility for some code

* There is a test suite! Woohoo!

« But you don't know how well the tests cover
the code / how adequate they are

« So you'll run coverage analysis to provide
some insights

GNU's gcov is an available option

calculator.c - :
test_calculator.c
: ' report
bt visualizer

Intro to gcov demo

Link a code coverage tool into your Cl
automation

Consult the results as part of your testing
process and code reviews

Back to basics: code coverage metrics

Code coverage testing: examines what fraction of the code under
test is reached by existing unit tests

Structural code coverage metrics include:
« Statement coverage (what we looked at with gcov)
« Condition coverage
» Decision coverage
« Modified condition/decision coverage

Which type of
coverage
requires the
most tests?

Code coverage: the basics

public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
Average of if (numbers == null || numbers.length == 0) {
the absolute throw new IllegalArgumentException(“Nums cannot be null or empty!");
values of an b
array of double sum = 0;
doubles for (int i=@; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 9) {
sum -= d;
} else {
sum += d;
}
}
return sum/numbers.length;

Create the control flow graph

throw new
a==null | IIl“egaIArgumentExcepnon(Seiansl
a.length==0 Array a must not be null or exit
false empty!”)
sum =0
=0

return . Normal
sum/a.length exit

sum += num

sum -= num

A 4

And align the two to help identify tests

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {
throw new IllegalArgumentException(“Numbers must not be null or empty!");

}

double sum = 0;
for (int i=@; i<numbers.length; ++i) {
double d = numbers[i];

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

if (d < 9) {
sum -= d;

} else {
sum += d;

}

}

return sum/numbers.length;

sum += num

e

10

Statement coverage

Every statement in the program must be executed at least once
by the tests

Statement coverage

throw new
lllegalArgumentException(

“Array a must not be null or
empty!”)

return

Exceptional
exit

sum/a.length

sum += num

»(Normal

In the control flow graph,
this is equivalent to node
coverage

Condition and decision coverage

Condition: a boolean expression that cannot be decomposed into simpler
boolean expressions (e.g., an atomic boolean expression)

Decision: a boolean expression that is composed of conditions, using 0 or
more logical connectors (a decision with 0 logical connectors is a condition)

Quiz:

If (a | b) { ..}

\/

What are a and b?
What is the boolean expression (a | b)?

Condition coverage

Condition: a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic)

Condition coverage: every condition in the program must
take on all possible outcomes (true/false) at least once

14

Condition coverage

throw new
lllegalArgumentException(Excanional
“Array a must not be null or ol

empty!”)

return »(Normal
sum/a.length :
num = a[i]

false —
sum += num

true
sum -= num

sum=0
i=0

A 4

++i

Decision coverage

Decision: a boolean expression that is composed of conditions,
using 0 or more logical connectors

Decision coverage: every decision in the program must take
on all possible outcomes (true/false) at least once

16

Decision coverage

throw new
lllegalArgumentException(
“Array a must not be null or

empty!”)

a==null |
alength==0

return

Exceptional
exit

sum/a.length

num = ali]

false —
sum += num
true
sum -= num

A 4

++i

»(Normal

In the control flow graph,
this is equivalent to edge
coverage

17

I/

There is a concept of “subsumption’

Given two coverage metrics A and B,
A subsumes B if and only if satisfying A implies satisfying B

« Subsumption relationships (true or false):

1. Does statement coverage subsume decision coverage?
2. Does decision coverage subsume statement coverage?
3. Does decision coverage subsume condition coverage?

4. Does condition coverage subsume decision coverage?

https://pollev.com/cse403wi

“u

Code Coverage - Do coverage types subsume each other

0 surveys completed
~

0 surveys underway

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Statement does not subsume Decision coverage

thiow new d Tl
Il€galArgumentException(Xcz‘))(ilona
“Something has gone wrong”)

true

a==null ||
a.length==0 N

false

sum=0
i=0

a.length>MAX

Test:
a.length = MAX+1

21

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Decision subsumes Statement coverage

throw new
lllegalArgumentException(Excanional
“Array a must not be null or ol

empty!”)

return »(Normal
sum/a.length :

sum += num

true
sum -= num

++i

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Decision and Condition — neither subsumes the
other

4 possible tests for the

decision:
albla]|b albla]|b
0 0 0 0 0 0
If (a | b) { ..}
0 1 1 0 1 1
o
1 0 1 1 0 1
1. a =90, b=290 1| 1 1| 1
2. a=0,b=1 These two satisfy These two satisfy
3. a=1, b=20 condition coverage decision coverage
but not decision but not condition
4. a =1, b =1

o

coverage coverage

Summarizing

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

« Subsumption relationships :

1.

Statement coverage does not subsume decision coverage

2. Decision coverage subsumes statement coverage
3.
4. Condition coverage does not subsume decision coverage

Decision coverage does not subsume condition coverage

27

Let's look at one more;: MC/DC -
Modified condition and decision coverage

« Every decision in the program must take on all possible outcomes
(true/false) at least once

« Every condition in the program must take on all possible outcomes
(true/false) at least once

« Each condition in a decision has been shown to independently affect that
decision’s outcome

A condition is shown to independently affect a decision’s outcome by
varying just that condition while holding fixed all other possible conditions

Required for safety critical systems (DO-178B/C)

MC/DC: an example

if (a | b)
a b Outcome MCDC
0 0 0 e Decision coverage
0 1 1 e Condition coverage
e Each condition shown to
1 0 1 independently affect outcome
1 1 1

Which tests (combinations of a and b) satisfy MCDC?

MC/DC: an example

if (a | b)
a b Outcome MCDC
0 0 0 e Decision coverage
0 1 1 e Condition coverage
e Each condition shown to
! 0 ! independently affect outcome
1 1 1

Which tests (combinations of a and b) satisfy MCDC?

MC/DC: an example

if (a | b)
a b Outcome MCDC
0 0 0 e Decision coverage
0 1 1 e Condition coverage
e Each condition shown to
L 0 L independently affect outcome
1 1 1

MCDC is usually cheaper than testing all possible combinations

MC/DC: coffee example

if(kettle & & cup && beans) {
return cup_of coffee;

}

else { return none; }

Kettle Cup Beans Coffee!
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Consider where each condition is shown to

independently affect the outcome

MC/DC: coffee example

if(kettle & & cup && beans) {
return cup_of coffee;

}

else { return none; }

Kettle Cup Beans Coffee!
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Consider where each condition is shown to

independently affect the outcome

MC/DC: coffee example

if(kettle & & cup && beans) {
return cup_of coffee;

}

else { return none; }

Kettle Mug Beans Coffee!
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Consider where each condition is shown to

independently affect the outcome

MC/DC: coffee example

if(kettle & & cup && beans) {
return cup_of coffee;

}

else { return none; }

Kettle Mug Beans Coffee!
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

MC/DC adequate test set

MC/DC: another example

if (a || b)
a b Outcome MCDC
0 0 0 o Decision coverage
0 1 1 o Condition coverage

e Each condition shown to
independently affect outcome

Why is this example different than (a | b)?

MC/DC: another example

if (a || b)
a b Outcome MCDC
. L 0 e Decision coverage
0 1 1 o Condition coverage

e Each condition shown to
independently affect outcome

Short-circuiting operators may not evaluate all conditions
» Last two row values for b don’t affect the outcome (so compiler/interpreter may
short circuit execution such that they aren’t evaluated if a is true)

Provide an MC
suite for: a|b

DC-adequate test

C
a b C Outcome
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Provide an MC
suite for: a|b

DC-adequate test

C
a b C Outcome
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Provide an MC
suite for: a|b

DC-adequate test

C
a b C Outcome
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Provide an MC
suite for: a|b

C

DC-adequate test

Outcome

o | O | T

o | O | o | o

Decision coverage
Condition
coverage

Each condition
shown to
independently
affect outcome

How much coverage is enough? 100%?

May be subject to the law of diminishing returns ... shoot for 80%

A ATLASSIAN

2. What percentage of coverage should you aim for?

There's no silver bullet in code coverage, and a high percentage of coverage could still be problematic if
critical parts of the application are not being tested, or if the existing tests are not robust enough to
properly capture failures upfront. With that being said it is generally accepted that 80% coverage is a good

goal to aim for. Trying to reach a higher coverage might turn out to be costly, while not necessary
producing enough benefit.

Another resource on code coverage and code coverage tools:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
And a good list of coverage tools:

https://www.browserstack.com/quide/code-coverage-tools

44

Code coverage takeaways

- Code coverage can provide valuable insights into your
code and into your testing adequacy

- It is intuitive to interpret

- There are great tools available to help compute code
coverage of your tests

- Code coverage itself is not sufficient to ensure correctness

- Code coverage is well known and used in industry

45

Last topic for today -

Integration testing

Do you get the expected results when the parts are put together?

11
I

Start with plain, “integration”

Integration: combining 2 or more software units and getting the
expected results

Why do we care about integration?
* New problems will inevitably surface
« Many modules are now together that have never been together before

* |f done poorly, all problems will present themselves at once
» This can be hard to diagnose, debug, fix

* There can be a cascade of interdependencies
« Cannot find and solve problems one-at-a-time

47

What do you think of phased integration

Phased ("big-bang") integration:
« Design, code, test, debug each
class/unit/subsystem separately

« Combine them all
* Hope for the best

48

In contrast to incremental integration

Incremental integration:
* Repeat
« Design, code, test, debug a new component

* Integrate this component with another (a
larger part of the system)

 Test the combination

« (Can start with a functional "skeleton”
system (e.g., zero feature release)
« And incrementally “flesh it out”

49

Is it obvious which is more successful?

* Incremental integration benefits:

* Errors easier to isolate, find, fix
reduces developer bug-fixing load

« System is always in a (relatively) working state
good for customer, developer morale

e But it isn't without challenges:

* May need to create "stub" versions of some features that aren’t
yet available

50

Incrementally from the top, bottom or “sandwich"?

“Sandwich" integration by fleshing out a skeleton system

Connect top-level Ul with crucial bottom-level components

« Add middle layers incrementally
* More common and agile approach

— Start

Finish = —
)/ ‘ .

Milestone 05: Beta

Demo a skeleton
implementation of
your product
showing the main
components are
integrated

51

Integration testing

Integration testing: verifying software quality by testing two or
more dependent software modules as a group

Can be quite challenging as:
« Combined units can fail in more places and in more complicated ways
* May need to use stubs to "rig" behavior if not all pieces yet exist

52

Testing takeaways

Testing matters!!!

Test early, test often

Bugs become well-hidden beyond the unit in which they occur

Don't confuse volume with quality of test data

Can lose relevant cases in mass of irrelevant ones
Look for revealing subdomains (“characteristic tests")

Choose test data to cover:

Specification (black box testing)
Code (white box testing)

Testing cannot prove the absence of bugs

But it can increase quality and confidence

53

Additional reference material on creating
stubs to allow for integration testing before
all code Is written

How to create a stub, step 1

1. Identify the dependency

a) This is either a resource or a class/object that is challenging or not
yet written

b) If itisn't an object, wrap it up into one

A A
+methodThatlsesX () +methodThatlUsesB ()
Resource X B Goal: Test class A
-yummyData
+flakyBehavior() + doStuffWwithx() Create Class B to
represent the
challenging/missing
Resource X dependency (as needed)
-yummyData
+ flakyBehaviar]

How to create a stub, step 2

2. Extract the core functionality of the object
into an interface

Create a stub InterfaceB based on B

Update A's code to work with type
InterfaceB, not B

A

+ methadThatUsesB ()

+ doStuffithi()

Resource x

-yurmnmyData

+ flakyBehaviar

winterfaces]
InterfaceB B
— interface
+ doStuffwith() object
#‘; —
Original
B

86

Create a stub, step 3

3. Write a second "stub" class that also
implements the interface,
but returns pre-determined fake data

Now A's dependency on B
is dodged and can be
tested easily

Can focus on how well A
integrates with B's
expected behavior

A

+ methodThatllsesB ()

ginterfaces B

InterfaceB .
— interface

+ doStuffiithxl) ObjeCt
% -
StubB

- fakeData Stub
+ doStuffiithx()

+ doStuffith)

!

Resource X

-yummyData

+ flakyBehavior

87

Inject the stub, step 4

So cool! Where inject the stub in the code so Class A will reference it?

e At construction
apple = new A(new StubB());

* Through a getter/setter method
apple.setResource(new StubB());

* Just before usage, as a parameter
apple.methodThatUsesB(new StubB());

Think about how to minimize code changes when you no longer
depend on the stub

88

