
More on Software Testing
CSE 403 Software Engineering
Winter 2026

Lectures this week

Today: Software testing
• White box testing: code coverage
• Integration testing

Wednesday: Industry guest Tanvi Tiwari, Meta
• Question on your takeaway from the talk due Wed

Friday: In-class exercise: code coverage
• Assignment due Fri

Motivating example – calculator module

3

Scenario
• You’ve inherited responsibility for some code
• There is a test suite! Woohoo!
• But you don’t know how well the tests cover

the code / how adequate they are
• So you’ll run coverage analysis to provide

some insights

GNU’s gcov is an available option

4

calculator.c
test_calculator.c

report
visualizer

5

Intro to gcov demo

Link a code coverage tool into your CI
automation

Consult the results as part of your testing
process and code reviews

Back to basics: code coverage metrics

Code coverage testing: examines what fraction of the code under
test is reached by existing unit tests

Structural code coverage metrics include:
• Statement coverage (what we looked at with gcov)
• Condition coverage
• Decision coverage
• Modified condition/decision coverage

Which type of
coverage

requires the
most tests?

7

Code coverage: the basics

Average of
the absolute
values of an
array of
doubles

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException(“Nums cannot be null or empty!");
}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}
return sum/numbers.length;

}

8

Create the control flow graph
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

9

And align the two to help identify tests
public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException(“Numbers must not be null or empty!");
}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}
return sum/numbers.length;

}

10

Statement coverage
Every statement in the program must be executed at least once
by the tests

11

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

In the control flow graph,
this is equivalent to node
coverage

12

Condition and decision coverage
Condition: a boolean expression that cannot be decomposed into simpler
boolean expressions (e.g., an atomic boolean expression)

Decision: a boolean expression that is composed of conditions, using 0 or
more logical connectors (a decision with 0 logical connectors is a condition)

Quiz:
If (a | b) { …}

What are a and b?
What is the boolean expression (a | b)?

13

Condition coverage

Condition: a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic)

Condition coverage: every condition in the program must
take on all possible outcomes (true/false) at least once

14

Condition coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

15

Decision coverage

Decision: a boolean expression that is composed of conditions,
using 0 or more logical connectors

Decision coverage: every decision in the program must take
on all possible outcomes (true/false) at least once

16

Decision coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

In the control flow graph,
this is equivalent to edge
coverage

17

There is a concept of “subsumption”

18

Given two coverage metrics A and B,
A subsumes B if and only if satisfying A implies satisfying B

• Subsumption relationships (true or false):
1. Does statement coverage subsume decision coverage?

2. Does decision coverage subsume statement coverage?

3. Does decision coverage subsume condition coverage?

4. Does condition coverage subsume decision coverage?

https://pollev.com/cse403wi

19

20

Statement does not subsume Decision coverage

Entry
point

a==null ||
a.length==0

sum = 0

i = 0

a.length>MAX

Exceptional
exit

throw new
IllegalArgumentException(

“Something has gone wrong”)

true

true

false

21

false
Test:

a.length = MAX+1

22

Decision subsumes Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

23

24

25

Decision and Condition – neither subsumes the
other

26

4 possible tests for the
decision:

1. a = 0, b = 0

2. a = 0, b = 1

3. a = 1, b = 0

4. a = 1, b = 1

a | bba

000

110

101

111

a | bba

000

110

101

111

These two satisfy
condition coverage

but not decision
coverage

These two satisfy
decision coverage
but not condition

coverage

If (a | b) { …}

Summarizing

27

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

• Subsumption relationships :
1. Statement coverage does not subsume decision coverage
2. Decision coverage subsumes statement coverage
3. Decision coverage does not subsume condition coverage
4. Condition coverage does not subsume decision coverage

Let’s look at one more: MC/DC -
Modified condition and decision coverage
• Every decision in the program must take on all possible outcomes

(true/false) at least once
• Every condition in the program must take on all possible outcomes

(true/false) at least once
• Each condition in a decision has been shown to independently affect that

decision’s outcome

A condition is shown to independently affect a decision’s outcome by
varying just that condition while holding fixed all other possible conditions

Required for safety critical systems (DO-178B/C)

MC/DC: an example

if (a | b)

Outcomeba

000

110

101

111

Which tests (combinations of a and b) satisfy MCDC?

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: an example

if (a | b)

Outcomeba

000

110

101

111

Which tests (combinations of a and b) satisfy MCDC?

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: an example

if (a | b)

Outcomeba

000

110

101

111

MCDC is usually cheaper than testing all possible combinations

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: coffee example

32

Coffee!BeansCupKettle

1111

0011

0101

0001

0110

0010

0100

0000

if(kettle && cup && beans) {
return cup_of_coffee;

}
else { return none; }

Consider where each condition is shown to
independently affect the outcome

MC/DC: coffee example

33

Coffee!BeansCupKettle

1111

0011

0101

0001

0110

0010

0100

0000

if(kettle && cup && beans) {
return cup_of_coffee;

}
else { return none; }

Consider where each condition is shown to
independently affect the outcome

MC/DC: coffee example

34

Coffee!BeansMugKettle

1111

0011

0101

0001

0110

0010

0100

0000

if(kettle && cup && beans) {
return cup_of_coffee;

}
else { return none; }

Consider where each condition is shown to
independently affect the outcome

MC/DC: coffee example

35

Coffee!BeansMugKettle

1111

0011

0101

0001

0110

0010

0100

0000

if(kettle && cup && beans) {
return cup_of_coffee;

}
else { return none; }

MC/DC adequate test set

MC/DC: another example

if (a || b)

Outcomeba

000

110

101

111

Why is this example different than (a | b)?

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: another example

if (a || b)

Outcomeba

000

110

1--1

1--1

Short-circuiting operators may not evaluate all conditions
• Last two row values for b don’t affect the outcome (so compiler/interpreter may

short circuit execution such that they aren’t evaluated if a is true)

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Provide an MCDC-adequate test
suite for: a | b | c

Outcomecba

0000

1100

1010

1110

1001

1101

1011

1111

Provide an MCDC-adequate test
suite for: a | b | c

Outcomecba

0000

1100

1010

1110

1001

1101

1011

1111

Provide an MCDC-adequate test
suite for: a | b | c

Outcomecba

0000

1100

1010

1110

1001

1101

1011

1111

Provide an MCDC-adequate test
suite for: a | b | c

Outcomecba

0000

1100

1010

1110

1001

1101

1011

1111

• Decision coverage
• Condition

coverage
• Each condition

shown to
independently
affect outcome

How much coverage is enough? 100%?
May be subject to the law of diminishing returns … shoot for 80%

Another resource on code coverage and code coverage tools:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
And a good list of coverage tools:
https://www.browserstack.com/guide/code-coverage-tools

44

Code coverage takeaways

• Code coverage can provide valuable insights into your
code and into your testing adequacy

• It is intuitive to interpret
• There are great tools available to help compute code

coverage of your tests
• Code coverage itself is not sufficient to ensure correctness
• Code coverage is well known and used in industry

45

Last topic for today -

Integration testing
Do you get the expected results when the parts are put together?

Start with plain, “integration”
Integration: combining 2 or more software units and getting the
expected results

Why do we care about integration?
• New problems will inevitably surface

• Many modules are now together that have never been together before
• If done poorly, all problems will present themselves at once

• This can be hard to diagnose, debug, fix
• There can be a cascade of interdependencies

• Cannot find and solve problems one-at-a-time

47

What do you think of phased integration

Phased ("big-bang") integration:
• Design, code, test, debug each

class/unit/subsystem separately
• Combine them all
• Hope for the best

48

In contrast to incremental integration

Incremental integration:
• Repeat

• Design, code, test, debug a new component
• Integrate this component with another (a

larger part of the system)
• Test the combination

• Can start with a functional "skeleton"
system (e.g., zero feature release)
• And incrementally “flesh it out”

49

Is it obvious which is more successful?

• Incremental integration benefits:
• Errors easier to isolate, find, fix

• reduces developer bug-fixing load
• System is always in a (relatively) working state

• good for customer, developer morale

• But it isn’t without challenges:
• May need to create "stub" versions of some features that aren’t

yet available

50

Incrementally from the top, bottom or “sandwich"?
“Sandwich" integration by fleshing out a skeleton system

Connect top-level UI with crucial bottom-level components
• Add middle layers incrementally
• More common and agile approach

Milestone 05: Beta

Demo a skeleton
implementation of
your product
showing the main
components are
integrated

51

Integration testing

Integration testing: verifying software quality by testing two or
more dependent software modules as a group

Can be quite challenging as:
• Combined units can fail in more places and in more complicated ways
• May need to use stubs to "rig" behavior if not all pieces yet exist

52

Testing takeaways
• Testing matters!!!

• Test early, test often
• Bugs become well-hidden beyond the unit in which they occur

• Don't confuse volume with quality of test data
• Can lose relevant cases in mass of irrelevant ones
• Look for revealing subdomains (“characteristic tests”)

• Choose test data to cover:
• Specification (black box testing)
• Code (white box testing)

• Testing cannot prove the absence of bugs
• But it can increase quality and confidence

53

Additional reference material on creating
stubs to allow for integration testing before
all code is written

57

How to create a stub, step 1
1. Identify the dependency

a) This is either a resource or a class/object that is challenging or not
yet written

b) If it isn't an object, wrap it up into one

Goal: Test class A

Create Class B to
represent the
challenging/missing
dependency (as needed)

Class A depends on
Class B

85

How to create a stub, step 2
2. Extract the core functionality of the object

into an interface

Create a stub InterfaceB based on B

Update A's code to work with type
InterfaceB, not B

B
interface
object

Original
B

86

Create a stub, step 3
3. Write a second "stub" class that also

implements the interface,
but returns pre-determined fake data

Now A's dependency on B
is dodged and can be
tested easily

Can focus on how well A
integrates with B's
expected behavior

Stub

B
interface
object

87

Inject the stub, step 4

So cool! Where inject the stub in the code so Class A will reference it?
• At construction

apple = new A(new StubB());

• Through a getter/setter method
apple.setResource(new StubB());

• Just before usage, as a parameter
apple.methodThatUsesB(new StubB());

Think about how to minimize code changes when you no longer
depend on the stub

88

