Software testing

CSE 403 Software Engineering
Winter 2026

Today’s outline

Software testing

* Motivating examples
* Categories of tests
* Unit testing

This Friday: In-class exercise on debugging with git (due 02/06/26)
Milestone 04 : Testing and Continuous Integration (due 02/10/26)

Could better testing have helped ...

Therac-25 radiation therapy machine (19ss-s7)

» Device to create high energy beams to destroy tumors with
minimal impact on surrounding healthy tissue

« Caused excessive radiation in some situations

« What happened?

— An update removed hardware interlocks that prevented the
electron-beam from operating in its high-energy mode.

So all the safety checks were done in the software.

— The software set a flag variable by incrementing it.
Occasionally an arithmetic overflow occurred, causing the

software to bypass safety checks.

— The equipment control task did not properly synchronize Ty
with the operator interface task, so that race conditions death in 6 patients
occurred if the operator changed the setup too quickly.

— And more ... Therac-25 - Wikipedia

Ariane 5 rocket (199

Cost of
program:

over
€1 billion

« European heavy-lift space launch vehicle - self-destructed 37 seconds after launch

* What happened?
« A control software bug went undetected -
« Conversion from 64-bit floating point to 16-bit signed integer caused an exception
* Floating-point number was larger than 32767 (max 16-bit signed integer), overflow
— Efficiency considerations had led to the disabling of the exception handler
— Program crashed - rocket crashed

Ariane 5 - Wikipedia

Boeiln g /87 US aviation authority: Boeing 787 bug
Dreamliner (2015) could cause 'loss of control

More trouble for Dreamliner as Federal Aviation
Administration warns glitch in control unit causes
e The bu g occurs w hen the generators to shut down if left powered on for 248 days
software 32-bit counter

overflows

» This happens if the generator
control units are on for 248 days
continuously

* Impact — the plane would lose

all electrical power, even if in
flight

« Bug was found (fortunately!)
before it was triggered in service

O The Boeing 787 has four generator-control units that, if powered on at the same, could fail
simultaneously and cause a complete electrical shutdown. Photograph: Elaine Thompson/AP

https://www.theguardian.com/

WannaCry Ransomware Attack «o17)

Cryptoworm infected computers, encrypting their
data, and demanding ransom payments
Estimated to have affected more than 200,000
computers across 150 countries

T

What happened?
. R accessible because ghey have heen encrypted. Maybe you are busy looking for a
° WannaCry eprOIted a bug |n the Se rver Message Paymantwill be ralsadion way to recaver your files, but do not waste your time. Nobody can recover your

files without our decryption service.
51572017 16:25:02
Block (SMB) protocol . S T——————
* MSFT provided a security-patch earlier but many

customers hadn’t installed it yet

% wWanna Decryptor 1.0

Ooops, your files have been encrypted!

What Happened to My Computer? =

Y our important files are encrypted.

Sure. We guarantee that you can recover all your files safely and easily. (Butyou _|
have not so enough time.)

You can try to decrypt some of your files for free. Try now by clicking <Decrypt=

If you want to decrypt all your files, you need to pay.

You only have 2 days to submit the payment. Affer that the price wili be doubled.
Also, if you don't pay In 7 days, you won't be able to recover vour files forever.

Cost of exploit:
100s of

Send $300 worth of bitcoin to this address:

152GqZCTeys6eCjDkE3DypCjXi6 QWRVEV1

millions to
billions of $

NHS - 70,000
hospital
devices were

impacted WannaCry ransomware attack - Wikipedia

C rOWd Strl ke (2024) Cost of exploit:

over $5 billion

* "Routine” update by CrowdStrike
crashed Windows devices

* CrowdStrike is security endpoint
protection software

* The sensor expected 20 input

ﬁeldS, but the Update eXpeCted 27 Your PC ran into a problem and needs to restart. We're
reSU|ting il’] Out—Of—bou nds read just collecting some error info, and then we'll restart for
. . you.
* Lack of testing across diverse .
environments before deployment 20% complete

e Affected 8.5 million systems
ﬁlobally, across banking,
ealthcare, airlines and more

https://www.techtarget.com/

It's important — at times, critically
important - to release quality software

Examples showed particularly costly errors
but every error adds up

Many of the most common and impactful
bugs can be caught with testing

Which was the top most dangerous (severe
and prevalent) software weakness in 20247

Integer overflow

SQL injection

Cross-site scripting

Null pointer dereference
Out-of-bounds read
Out-of-bounds write

11

SQL injection

Assume this code:
String query =
"select from table where user='" + username + "'";
If the user enters “alverson”, the value of query is:

"select from table where user='alverson'"

12

SQL injection

Assume this code:
String query =
"select from table where user='" + username + "'";
If the user enters “alverson”, the value of query is:
"select from table where user='alverson'"

What if a user enters, as their username: ' or "=
The value of query is:

13

SQL injection

Assume this code:
String query =
"select from table where user='" + username + "'"
If the user enters “alverson”, the value of query is:
"select from table where user='alverson'"

What if a user enters, as their username: 'or'='
The value of query is:

"select from table where user='' or "=''"

14

Cross-site scripting

1. Malicious actor discovers a website
with a vulnerability that enables a
script to be injected

2. Malicious actor injects script that
steals website user’s info (like
session cookies)

Malicious
Actor

Website

15

Cross-site scripting

. Malicious actor discovers a website
with a vulnerability that enables a
script to be injected

. Malicious actor injects script that
steals website user’s info (like
session cookies)

. Each time a user visits the website,
the script is activated

. User’s session cookies are sent to
malicious actor ®, who can now
access any user account info (like
credit card info)

Malicious
Actor

Website

16

Which was the top most dangerous (severe
and prevalent) software weakness in 20247

Integer overflow https: //PollEv.com/cse403wi
SQL injection »
Cross-site scripting ¥ 3 .

A B C

Null pointer dereference
Out-of-bounds read
Out-of-bounds write

17

What was the top (severe and prevalent) most
dangerous software weakness reported in 2024?

<70

Integer Overflow

SQL Injection

Cross-site Scripting

Null Pointer Dereference
Out-of-bounds Write

Out-of-bounds Read

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What was the top (severe and prevalent) most
dangerous software weakness reported in 2024?

<70

Integer Overflow

0
SQL Injection

0
Cross-site Scripting

0
Null Pointer Dereference

0
Out-of-bounds Write

0

Out-of-bounds Read

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

2024 CWE Top 25

Rank ID Name
d ata Says 1 CWE-79 Improper Neutralization of Input During Web Page
=————=—=1 |[Generation ('Cross-site Scripting')
2 CWE-787 ||Out-of-bounds Write
2024 CWE Top 25 3 CWE-89 Improper Neutralization of Special Elements used in an
= |ISQL Command ('SQL Injection'
Most Dangerous Ol Fon L 8 ThjestionD
4 CWE-352 ||Cross-Site Request Forgery (CSRF)
SOftwa re 5 CWE-22 Improper Limitation of a Pathname to a Restricted
~——== |Directory ('Path Traversal'
Weaknesses 24)
6 CWE-125 ||Out-of-bounds Read
7 CWE-78 Improper Neutralization of Special Elements used in an
. . = ||0S Command ('OS Command Injection')
https://cwe.mitre.org/top25/archive
/2024/2024 cwe top25.html#tableV 8 CWE-416 ||Use After Free
1eW 9 CWE-862 |[Missing Authorization
10 CWE-434 |Unrestricted Upload of File with Dangerous Type
' Improper Control of Generation of Code (‘Code
11 CWE-94 Injection’)
12 CWE-20 ||Improper Input Validation
12 CWE_77 Improper_N_t_autraIizatiqn of Spec_igal Elements used in a

So let's test! Four categories of testing

1. Unit Testing
* Does each module do what it is supposed to do in isolation?

2. Integration Testing
* Do you get the expected results when the parts are put together?

3. Validation Testing
» Does the program satisfy the requirements?

4. System Testing

 Does the program work as a whole and within the overall
environment? (includes full integration, performance, scale, etc.)

21

What are other common testing terms?

Let's see if we can name at least 10:

* Regression testing

* Black box, white box testing
* Code coverage testing

* Boundary case testing

* Test-driven development

* Mutation testing

* Fuzzy testing

* Performance testing

* Usability testing

* Acceptance testing

www.freepick.com

22

Fool me once, shame on you

Reg reSS|On teSt| ng Fool me twice, shame on me

Proverb stemming back to 1600's

« Whenever you find a bug

Store the input that triggered that bug, plus the correct output
Add these to the test suite

Verify that the test suite fails

Fix the bug

Verify the fix

 Ensures that your fix solves the problem
 Protects against updates that reintroduce bug

It happened at least once, and it might will happen again

23

Time out: How else can we build in quality?

What can we do beyond testing?
Hint: build in quality from the start © "

» Good architecture, design and planning ‘
« Coding style guides

 Code reviews/walkthroughs

Static analysis

« Atomic commits

* Pair programming

24

Another time out: testing vs. debugging

Is there a difference?

Testing: is there a bug ‘

Debugging: where is the bug, how do
we fix the bug

25

Today's outline

Software testing
« Motivating examples
« Categories of tests
« Unit testing
Black box testing
Boundary case testing
Test driven development
White box testing
Static code analysis
Code coverage testing

Unit Testing
Test that a
method/class/module
behaves as specified

26

Unit testing

* A unit is the smallest testable part of the software system
(e.g., a method in a Java class)

« Goal: Verify that each software unit performs as specified
* Focus:

* [Individual units (not the interactions between units)
* Usually input/output relationships

27

Unit testing example

Average of the absolute values of an array of doubles

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 9;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {
sum -= d;
} else {
sum += d;

}ox

return sum/numbers.length;

J\

What tests should we write for this method?

28

Starting at the top

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code
Examines the module/system internals
Trace data flow directly
Bug report contains more detail on source of defect

30

Black-box testing

« Black-box is based on requirements and functionality, not
code

« Tester may have actually seen the code before ("gray box")
« But doesn't look at it while constructing the tests

« Often done from the end user or client's perspective

« Emphasis on parameters, inputs/outputs (and their validity)

31

How do you know when you are done
testing?

You have tested all the behaviors, according to the specification?

How do you know when you have tested all the behaviors?

What if the behavior differs from the specification?

Starting approach:

 Build tests according to the text of the specification
« “cover” the specification

« Educated guess about what errors the dev might have made
« Add more tests based on these guesses/heuristics

32

Black box: boundary case testing

Boundary case testing:

« What: test edge conditions
* Why?

#2 and #6 2024 Most Dangerous Software Weakness!
Likely source of programmer errors (< vs. <=, etc.)

Requirement specs may be fuzzy about behavior on boundaries
Often uncovers internal hidden limits in code

Example: array list must resize its internal array when it fills capacity

33

Black box: boundary case example #1

« Write test cases based on paths through the specification

* int find(int[] a, int wvalue) throws Missing
// returns: the smallest i such that a[i] == wvalue
// throws: Missing if value not in af[]

 Two obvious tests:
([45¢6],5) =>1
([456],7) =>throw Missing

* Have we captured all the paths?
([4,5 35],5) => 1

34

Boundary case #2

<E> void appendList(List<E> src, List<E> dest) {
// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case?

35

Boundary case #2 (aliases)

<E> void appendList(List<E> src, List<E> dest) {
// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case?

« Consider if src and dest are the same object
 Testing aliasing is a good test!

36

Boundary case #3

public int abs(int x)
// returns: |x|

* What are some values or ranges of x that might be worth probing?
x<0, x20
x = 0 (boundary condition)
Specific tests: say x = -1, 0, 1

37

Boundary case #3 (arithmetic overflow)

public int abs(int x)
// returns: |x|

* How about...

int x = -2147483648; // this is Integer.MIN VALUE
System.out.println (x<0) ; // true
System.out.println(Math.abs(x)<0); // also true!

Javadoc on abs says ... if the arPu_ment is equal to the value of Integer.MIN_VALUE,
the most negative representable int value, the result is that same value, which is
negative

38

Theory explains why boundary testing works

* Divide the input into subdomains
* A subdomain is a subset of possible inputs
* Identify input sets with same behavior
* Try one input from each set

* “Same” behavior depends on specification

* A program has the “same behavior” on two inputs if it:
1) gives correct result on both, or
2) gives incorrect result on both

* "Same behavior” is unknowable _ . . '
* A subdomain is revealing for an error, E, if each test input fails (misbehaves)

If the program has an error, it is revealed by a test in its revealing
subdomain

39

What if you mis-drew the boundaries?

Boundary case testing heuristic

e Create tests at the boundaries of subdomains

« Catches common boundary case bugs:
* Arithmetic
« Smallest/largest values
« Zero
» Objects
* Null
* Circular
« Same object passed to multiple arguments (aliasing)

41

Black box: test driven development

Test driven development (TDD):
 What;

* Test based on the spec and developed before the
code is written

« Wil fail initially 3
* Write just enough code to make it pass!

Refactor
* Why? code

 /

Write
code to
pass test

-

42

Black box: test driven development

Test driven development (TDD):
 What:

* Test based on the spec and developed before the
code is written

* Will fail initially
* Write just enough code to make it pass!

* Why? Refactor
« Significantly less defect rate code

* Improved understanding of requirements and ability
to influence design

* Not influenced by implementation choices

Write
code to
pass test

43

Let's try it out with this avgAbs spec

double avgAbs (double ... numbers)
// Average of the absolute values of an array of doubles

TDD — what tests need to pass in order for us to sign off on the coding?

* assertEquals(2.0, avgAbs({1.0, 2.0, 3.0}));
* assertEquals (2.0, avgAbs({1.0, -2.0, 3.0}));
* assertEquals (2.0, avgAbs({2.0}))

44

Let's try it out with this date spec

class Date
* Date(int yyyy, int mm, int dd)
// Creates date dd/mm/yyyy
* boolean after (Date datel, Date date2)
// Tests if datel is after date2
* Date subtractWeeks (Date datel, int numWks)
// Subtracts numWks from datel

TDD - what tests need to pass in order for us to sign off on the coding?
TDD can result in a lot of tests!
» Develop tests now (TDD) or later — need to be judicious in which to write

45

Moving on to white box testing

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code
Examines the module/system internals
Trace data flow directly
Bug report contains more detail on source of defect

46

White (clear, glass) box testing

« Ultimate goal:
Test suite covers (executes) all of the program

« Assumption:
Test more behaviors => better test suite quality

 Benefit: tests features not described by specification
« Control-flow details
 Performance optimizations
« Alternate algorithms for different cases

Static code analysis is
one type of white-box
testing
(see "Cl" lecture)

Test suite code
coverage is another

47

A motivating example for white box testing

boolean[] primeTable = new boolean[CACHE SIZE];
boolean isPrime (int x) {
if (x>CACHE SIZE) ({
for (int i=2; i<x/2; i++) {
if (x%1i==0) return false;
}
return true;
} else {
return primeTable[x];

}
}

Consider an important transition around x = CACHE_SIZE

48

White box testing has advantages

* Greater confidence in code quality
* Correlating to greater amount of code covered by tests
* |f tests cover all of the code in the program, are you confident it's error free?

* Insight into test cases
* Which tests are likely to yield new information (and should be written)

* (Can surface an important class of boundaries
* Consider CACHE_SIZE
* Need to check numbers on each side of CACHE s1zE
* CACHE SIZE-1, CACHE SIZE, CACHE SIZE+1
* |If cacHE SIzE is mutable, we may need to test with different CACHE SIZE’s

49

White box testing has disadvantages

 Focus on the code: miss incompatibilities with spec
 Focus on the algorithm: miss alternate implementations
» Groupthink: think like the coder

50

White (clear, glass) box testing

« Ultimate goal:
Test suite covers (executes) all of the program
Question: what does “all of the program”
mean?

Every line of code
Every then and else
clause

Every CMP
instruction in the
binary

Every input

Ultimate goal:
Maximize a

measurement
of the test suite

So, code coverage testing

Code coverage testing: examines what fraction of the code under
test is reached by existing unit tests

« Statement coverage - tries to reach every line (practical?)
« Branch coverage - follow every distinct branch through code
« Condition coverage - every condition that leads to a branch

« Function coverage - treat every behavior / end goal separately

Dead code? A distraction? Or important?

53

Consider tests to cover all paths for a Date class

False

‘B

False
D

if (mm == 2)

Date::
isValidDate ()

if (leapyear
(YyYyy))

Invalid E | True F|False
Date
Y Y
Daysofmonth (2] = 29; Daysofmonth(2] = 28

if (dd<DaysofMonthimm] ||
dd>DaysofMonth{mm])

Iﬁlﬁi;d valid Date

54

Consider tests to cover all paths for a Date class

False

False
D
Date: :
1sValidDate ()
if (leapyear
(YyYyy))
Invalid E | True ¥ | False
Date
Y Y
Daysofmonth (2] = 29; Daysofmonth(2] = 28

Invalid

if (dd<DaysofMonthimm] ||
Date

dd>DaysofMonth{mm])

Valid Date

More on code
coverage on
Monday

Use a code
coverage tool as
part of your
project testing

55

Ending today with some Rules of Testing

* First rule of testing: do it early and do it often
Best to catch bugs soon, before they have a chance to hide
Automate, automate, automate the process

« Second rule of testing: be systematic
If you randomly thrash, bugs will hide until you're gone

Writing tests is a good way to understand the spec
Think about revealing domains and boundary cases
If the spec is confusing, write more tests

Spec can be buggy too

If you find incorrect, incomplete, ambiguous, and missing corner cases, fix it!

 Third rule of testing: don’t let a bug bite twice
When you find a bug, fix it + write a regression test for it

56

