
Build systems, continuous 
integration and delivery
CSE 403 Software Engineering
Winter 2026



2

Topics Lifecycles Requirements

1 2 3 4 5 6 7 8 9 10

Architecture 
and Design

Continuous development, 
testing, and integration

Proposal

Course overview: schedule

Advanced: Intellectual 
property, AI, UX, 
testing, design 

Reqs Arch and 
Design

Testing 
& CI

Beta Release, Gamma 
Release, Peer Review

Final 
Release

Major 
Project 

Milestones
(9 total)

In-class 
Exam

In-class 
exercises & 

surveys
(throughout)

Week

Reflection

In class exercises and surveys   

W
e 

a
re

 h
e

re



Project tips
• Creating your project schedule

• Include major class deliverables and dates
• Include major integration and test points
• [Milestone deliverables | Target date | Major tasks to make it happen]

• Week plan in your project status report (or scrum board)
• Break down the tasks enough to assign who is delivering what this week
• Improves clarity, understanding, and accountability

• User requirements
• Consider all personas using your system, e.g., student, instructor, librarian
• Formal use cases are conversations; remember to include system response 

and have a use case for each major feature / each persona
3



Today’s outline

1. Build systems, as a component of …
2. Continuous integration and delivery/deployment systems

• What are these 
• How do they relate
• Best practices
• Ideas to explore for your projects

See Appendix for topological sort and Calendar for devops readings

4



Planning
1

Analysis

2

Design
3

Implementation

4

Testing
5Deployment

6

Monitor
7

Build/CI/CD fits primarily in Implementation, Testing, and Deployment stages

Software development lifecycle



6

The code is written … now what?
• Get the source code
• Install dependencies
• Run static analysis
• Compile the code
• Generate documentation
• Run tests
• Create artifacts for customers
• Ship!
• Operate, monitor, repeat

What does a developer do?



7

The code is written … now what?
• Get the source code
• Install dependencies
• Run static analysis
• Compile the code
• Generate documentation
• Run tests
• Create artifacts for customers
• Ship!
• Operate, monitor, repeat

What does a developer do?

Which of these tasks should 
be handled manually?



8

The code is written … now what?
• Get the source code
• Install dependencies
• Run static analysis
• Compile the code
• Generate documentation
• Run tests
• Create artifacts for customers
• Ship!
• Operate, monitor, repeat

What does a developer do?

Which of these tasks should 
be handled manually?

NONE!



Instead, orchestrate with a tool
Build system:  a tool for automating compilation and related tasks
• Is a component of a continuous integration/delivery/deployment system

 Get the source code
 Install dependencies
 Run static analysis
 Compile the code
 Generate documentation
 Run tests
 Create artifacts for customers
 Ship!
 Operate, Monitor, Repeat

9



Instead, orchestrate with a tool
Build system:  a tool for automating compilation and related tasks
• Is a component of a continuous integration/delivery/deployment system

 Get the source code
 Install dependencies
 Run static analysis
 Compile the code
 Generate documentation
 Run tests
 Create artifacts for customers
 Ship!
 Operate, Monitor, Repeat

These are all tasks handled by CI/CD systems

10



A build system has three main roles

1. Defines tasks 
Generally associated with getting source code and external resources, 
such as libraries, into an executable form

2. Defines dependencies among tasks (a graph)

3.  Executes the tasks

11



Even build system tasks are code

• Should be tested
• Should be code-reviewed
• Should be checked into version control

12



A good build system is valuable to us

1. Dependency management
1. Identifies dependencies between files (including externals)
2. Runs the compiles in the right order to pick up the right dependencies
3. Only runs the compiles needed due to dependency changes

2. Efficiency and reliability
1. Automates the build process so that new and old team members, even 

working in different dev environments, can move quickly from 
development to shipping code

2. Eliminates the chance of missing steps due to tribal knowledge and/or 
simply errors

13



Here is a simple example code illustrating 
dependency management

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

14



15

compile
Main

compile
Lib

run 
libtest

run 
system
test

Build systems: identify dependencies 
between tasks

What are the 
dependencies 
between these 

tasks?
And why do I care?

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java



16

compile
Main

compile
Lib

run lib
test

run 
system
test

Build systems: identify dependencies 
between tasks

Arrow X to Y 
if

Y depends on X



17

compile
Main

compile
Lib

run lib
test

run 
system
test

Build systems: identify dependencies 
between tasks



18

compile
Main

compile
Lib

run lib
test

run 
system
test

In what order 
should we run 
these tasks?

Build systems: identify dependencies 
between tasks

Tip: look for tasks 
with no 

dependencies and 
run those first



19

Large projects have thousands of tasks

• Dependencies between tasks form a directed acyclic graph

• Build tools use a topological sort to create an order to compiles
• Order nodes such that all dependencies are satisfied
• Implemented by computing indegree (number of incoming edges) for 

each node
• No dependencies go first and open door to the others

External code (libraries) also can be complex
• Build systems can manage these dependencies as well!

Build systems can determine task order



A build system has three main roles

1. Defines tasks (and external resources, such as libraries)
2. Defines dependencies among tasks (a graph)
3. Executes the tasks

20

Consider a task for automated testing before the compile step, 
such as static analysis



Static analysis

Analyze source code for potential vulnerabilities
Run before the compile step

Examples:
• Credential scan
• Date scan 
• Personal data scan
• Sensitive data scan

What might be 
others?

Is this 
worthwhile?

21



Build systems: opportunity for static analysis

Could these types of static 
analysis tools be run earlier than 

build?  

22



JAVA+

Open-source successor to ant and mavengradle

Open-source version of Google’s internal build tool (blaze)bazel

PYTHON

Implements standards from the Python standard (uses 
TOML files, has PIP integration)

hatch

Packaging and dependence managerpoetry

Automate and standardize testingtox

JAVASCRIPT

Standard package/task manager for Node, "Largest 
software registry in the world."

npm

Module bundler for modern JavaScript applicationswebpack

Tries to improve dependency and packinggulp

Many 
other 

options! 

Over to 
you to 

research

23

Milestone 04:  Research, evaluate and choose a 
build system for your project



Today’s outline

• Build systems, as a component of …
• Continuous integration and delivery/deployment systems

• What are these and
• How do they relate
• Best practices
• Ideas to explore for your projects

24



25

Continuous integration

Purpose is to merge developer code changes into a shared 
repository multiple times a day, with automated builds and tests

Includes:
• Frequent commits (small, incremental changes)
• Automated builds triggered on every commit
• Automated tests for rapid feedback

Pros:
• Early bug detection
• Reduced integration headaches
• Improved team collaboration



Unit, integration tests, etc.

PR Opened

In a shared repo (e.g., Github)

Change Detection

GitHub Actions detects the commit

Automated Build

Build process begins

Test Suite Runs

Feedback Provided

Pass/fail, code coverage, etc.

Continuous integration  workflow example



27

Continuous integration basics
• A CI workflow is triggered when an event occurs in your [shared] repo

• Example events
• Push
• Pull request
• Issue creation

• A  workflow contains jobs that run in a defined order
• A job is like a shell-script and can have multiple steps 
• Jobs run in their own vm/container called a runner
• Example jobs

• Run static analysis
• Compile, test
• Deploy to test, deploy to prod

Using GitHub 
CI terminology 
but concepts 
span other CI 

systems



28

CI basics (w/ GitHub CI) What SW architecture 
does this appear to be 

using?

Actions are common 
github tasks – leverage 
those built-in or created 
by others (e.g., checkout)



29

Example: CI with Github actions

Code reuse with 
established “actions”

Trigger

Workflow name

Linux OS environment

One command to run test suite

Unit tests are triggered 
on every push of new 

code



30

Let’s look at some live CI workflows

hannahpotter/manual-code-review-examples
See:  .github/workflows

Real 403 project 
See:  it runs lint and code coverage report too



31

CI vs CD: What’s the difference?
Continuous Integration (CI)
• Devs regularly integrate code into a shared repository
• System builds/tests automatically with each update
• Complements local developer workflows (e.g., may run diff tests)
• Goal: to find/address bugs quicker, improve quality, reduce time to 

get to working code

Continuous Deployment/Delivery (CD) 
• Builds on top of CI
• Automatically pushes changes to [staging environment and then] 

production
• Goal: always have a deployment-ready build that has passed 

through a standardized testing process



Staging before Production is 
very typical of industry 
practices 

Why would you not 
always automatically 
deploy?

32

Continuous delivery

Continuous deployment

Continuous integration
Approve deploy

Auto deploy

Version control
Commit changes

Build
Build and unit tests

Staging
Deploy to test env
Integration tests, load tests, etc.

Production
Deploy to prod
Monitor

CD vs CD: What’s the difference?



Staging before Production is 
very typical of industry 
practices 

Why would you not 
always automatically 
deploy to prod?

33Amazon example

Continuous delivery

Continuous deployment

Continuous integration
Approve deploy

Auto deploy

Version control
Commit changes

Build
Build and unit tests

Staging
Deploy to test env
Integration tests, load tests, etc.

Production
Deploy to prod
Monitor

CD vs CD: What’s the difference?



34

CD vs CD: What’s the difference?

Continuous Delivery
• Codebase is always in a deployable state
• May require manual approval to push to production
• Common for mobile apps due to app store review process

Continuous Deployment 
• Fully automated release process to production
• No manual steps once tests pass
• Common for web sites & backend systems



35

Hosted Services Self-Managed Tools Supporting Technologies
• GitHub 

Actions
• GitLab CI/CD
• CircleCI
• Travis CI
• Buildkite

• Jenkins
• TeamCity
• Bamboo

• Docker for 
containerization

• Kubernetes for 
container orchestration

• Infrastructure as Code 
(Terraform, Ansible)

Milestone 04: Research, evaluate and choose 
a CI system for your project



Consider these CI/CD scenarios…



No automated CI/CD system

• Manual build, integration, and releases

• Limited or no automated testing

• Long feedback loops

• Business impact?



No automated CI/CD system

• Manual build, integration, and releases
• Large, infrequent code merges lead to conflicts discovered late
• Error-prone and time-consuming deployment steps

• Limited or no automated testing
• Bugs often caught in production
• High risk of downtime

• Long feedback loops
• Delayed discovery of issues
• Slow response to user needs or market changes

• High cost business impact



Poorly implemented CI/CD system

• Incomplete or rarely used pipelines

• Minimal test coverage

• Unreliable pipelines

• Business impact?



Poorly implemented CI/CD system

• Incomplete or rarely used pipelines
• Build/test stages not automatically triggered, skipped or inconsistent

• Minimal test coverage
• Automated tests exist but don't cover critical functionality
• Production bugs still leak through
• False sense of security when pipelines pass without catching issues

• Unreliable pipelines
• Frequent pipeline failures without clear resolution 
• Teams lose trust and revert to manual processes

• High cost business impact



Robust CI/CD system

Fully automated build & test pipeline
Every commit triggers a build and thorough suite of tests 
Faster feedback; issues discovered and fixed early

Frequent, small releases
Easier to deploy, roll back if necessary, and reduce release 
risk; Users see new features and fixes quickly

High confidence in deployment
Well-defined gating stages ensure only stable code is 
promoted; Post-deployment monitoring and automatic 
rollback if critical failures occur

Positive business impact
Faster time-to-market, improved quality & reliability, 
enhanced developer productivity, strong DevOps culture



Summary
• Automate, automate, automate 

everything!

• Always use a build tool (one-step 
build) 

• Use a CI tool to build and test your 
code on every commit

• Don’t depend on anything that’s 
not in the build file

• Don’t break the build!

42



Appendix - Topological sort example

43



44

compile
Main

compile
Lib

run lib
test

run 
system
test

Build systems: topological sort

What’s the indegree of each node?



45

compile
Main

compile
Lib

run lib
test

run 
system
test

0

0

1

3

Build systems: topological sort



46

compile
Main

compile
Lib

run lib
test

run 
system
test

0

0

0

2

Build systems: topological sort



47

compile
Main

compile
Lib

run lib
test

run 
system
test

0

0

0

1

Build systems: topological sort



48

compile
Main

compile
Lib

run lib
test

run 
system
test

0

0

0

0

Build systems: topological sort



49

compile
Main

compile
Lib

run lib
test

run 
system
test

0

0

0

0

Build systems: topological sort



50

compile
Main

compile
Lib

run lib
test

run 
system
test

Valid sorts:

1. compile Lib, run lib test, 
compile Main, run system test

2. compile Main, compile Lib, 
run lib test, run system test

3. compile Lib, compile Main, 
run lib test, run system test

Which is preferable?

Build systems: topological sort



Let’s try writing our own simple CI workflow

Follow along at: 
https://github.com/alv880/UW-CSE403-Alv-Projects

Github Actions resource:
https://docs.github.com/en/actions/learn-github-actions/understanding-
github-actions

51



52

Example: CI at work in CSE

Lab In The Wild 
is a research 
project drawing 
survey input 
from diverse 
community

– Nigini Oliveira 
UW researcher 
provided this 
example



53

Example: CI with Github actions



54

Let’s try writing our own simple workflow

Follow along at: 
https://github.com/alv880/UW-CSE403-Au23-Projects

Real 403 project example at:
https://github.com/amgupta2/IntelliCue/blob/main/.github/workflo
ws/ci.yml

Nice light starter tutorial – Automation Step by Step: 
https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs



Let’s look at a CI workflow from a CSE 403 
project

55

Connor’s 
team’s 
repo

Need updating – Can a TA demo their 
CI workflow



56

Example: continuous deployment with 
GitHub Pages  (https://pages.github.com/)

Content 
updates trigger 
publishing the 
website update



57

Example: continuous deployment config



58

Example: continuous deployment config


