Build systems, continuous

integration and delivery

CSE 403 Software Engineering
Winter 2026

Course overview: schedule

Week
: : Advanced: Intellectual
. Architecture Continuous development
Topics i i : ‘ : ent,
P! Lifecycles Requirements and Design testing, and integration ptrecgriﬁ‘r;y’dAels’ig:\(’
Major
!‘:roJeCt Proposal Testing Beta Release, Gamma Final Reflection
Milestones P & Cl Release, Peer Review Release
(9 total)
In-class
exercises &
surveys In class ex s and surveys
(throughout)

We are here

Project tips

* Creating your project schedule
* Include major class deliverables and dates
* Include major integration and test points
« [Milestone deliverables | Target date | Major tasks to make it happen]

« Week plan in your project status report (or scrum board)
» Break down the tasks enough to assign who is delivering what this week
* Improves clarity, understanding, and accountability

* User requirements
« Consider all personas using your system, e.g., student, instructor, librarian

« Formal use cases are conversations; remember to include system response
and have a use case for each major feature / each persona

Today's outline

1. Build systems, as a component of ...
2. Continuous integration and delivery/deployment systems

What are these

How do they relate

Best practices

Ideas to explore for your projects

See Appendix for topological sort and Calendar for devops readings

Software development lifecycle
Build/Cl/CD fits primarily in Implementation, Testing, and Deployment stages

. Analysis
Planning
1 2
Design
7 3
Monitor
Implementation
6 4
Deployment 5

Testing

What does a developer do?

The code i1s written ... now what?
« Get the source code

 Install dependencies

« Run static analysis

« Compile the code

« Generate documentation

« Run tests

« Create artifacts for customers

« Ship!

« Operate, monitor, repeat

What does a developer do?

The code is written ... now what?

« Get the source code
 Install dependencies

Which of these tasks should

« Run static analysis
be handled manually?

« Compile the code

« Generate documentation

« Run tests

« Create artifacts for customers
« Ship!

« Operate, monitor, repeat

What does a developer do?

The code is written ... now what?

Which of these tasks should
be handled manually?

NONE!

« Operate, monitor, repeat

Instead, orchestrate with a tool

Build system: a tool for automating compilation and related tasks

AN NN N N NN YR

Is a component of a continuous integration/delivery/deployment system

Get the source code

Install dependencies

Run static analysis

Compile the code

Generate documentation
Run tests

Create artifacts for customers
Ship!

Operate, Monitor, Repeat

Instead, orchestrate with a tool

Build system: a tool for automating compilation and related tasks
* Isa component of a continuous integration/delivery/deployment system

These are all tasks handled by CI/CD systems

Get the source code

Install dependencies “
Run static analysis

Compile the code

Generate documentation
Run tests

Create artifacts for customers
Ship!

Operate, Monitor, Repeat

AN NN N N NN YR

10

A build system has three main roles

1. Defines tasks
Generally associated with getting source code and external resources,
such as libraries, into an executable form

2. Defines dependencies among tasks (a graph)

3. Executes the tasks

11

Even build system tasks are code

 Should be tested
 Should be code-reviewed
 Should be checked into version control

12

A good build system is valuable to us

1. Dependency management

1.

|dentifies dependencies between files (including externals)

2. Runs the compiles in the right order to pick up the right dependencies
3. Only runs the compiles needed due to dependency changes

2. Efficiency and reliability

1.

Automates the build process so that new and old team members, even
working in different dev environments, can move quickly from
development to shipping code

Eliminates the chance of missing steps due to tribal knowledge and/or
simply errors

13

Here is a simple example code illustrating
dependency management

% ls src/
Lib.java
LibTest. java
Main.java
SystemTest. java

Build systems: identify dependencies
between tasks

compile
Lib
% 1s src/ What are the
Lib.java dependencies
between these

LibTest. java
Main.java tasks?

SystemTest.Jjava And why do | care?
compile
Main

Build systems: identify dependencies
between tasks

compile
Lib

Arrow Xto Y
if
Y depends on X

compile
Main

Build systems: identify dependencies
between tasks

Build systems: identify dependencies
between tasks

compile
Lib

Tip: look for tasks
with no
dependencies and
run those first

In what order
should we run
these tasks?

compile
Main

18

Build systems can determine task order

Large projects have thousands of tasks
* Dependencies between tasks form a directed acyclic graph

* Build tools use a topological sort to create an order to compiles
« Order nodes such that all dependencies are satisfied

« Implemented by computing indegree (number of incoming edges) for
each node

* No dependencies go first and open door to the others

External code (libraries) also can be complex
« Build systems can manage these dependencies as well!

A build system has three main roles

1. Defines tasks (and external resources, such as libraries)
2. Defines dependencies among tasks (a graph)
3. Executes the tasks

Consider a task for automated testing before the compile step,
such as static analysis

20

Static analysis

Analyze source code for potential vulnerabilities
Run before the compile step

Examples:
e Credential scan
e Date scan
* Personal data scan
* Sensitive data scan

What might be
others?

Is this
worthwhile?

21

Build systems: opportunity for static analysis

& C & github.com/Yelp/detect-secrets

‘= README.md

(") detect-secrets—ci failing | pypi package '1.4.0 | homebrew 1.4.0 | PRs [We

detect-secrets ¢

About @

detect-secrets is an aptly named module for (surprise, surprise) detecting
secrets within a code base.

However, unlike other similar packages that solely focus on finding secrets, this
package is designed with the enterprise client in mind: providing a backwards
compatible, systematic means of:

1. Preventing new secrets from entering the code base,
2. Detecting if such preventions are explicitly bypassed, and

3. Providing a checklist of secrets to roll, and migrate off to a more secure
storage.

Could these types of static
analysis tools be run earlier than
build?

& C @ github.com/bearer/bearer

‘= README.md

& bearer

Scan your source code against top security and privacy risks.

Bearer CLl is a static application security testing (SAST) tool that scans your source
code and analyzes your data flows to discover, filter and prioritize security and
privacy risks.

22

Milestone 04: Research, evaluate and choose a

build system for your project

Many
other
options!

Over to
you to
research

JAVA+

PYTHON

JAVASCRIPT

gradle

bazel

hatch

poetry

tox

npm

webpack

gulp

Open-source successor to ant and maven
Open-source version of Google’s internal build tool (blaze)

Implements standards from the Python standard (uses
TOML files, has PIP integration)

Packaging and dependence manager
Automate and standardize testing

Standard package/task manager for Node, "Largest
software registry in the world."

Module bundler for modern JavaScript applications
Tries to improve dependency and packing

Today's outline

 Build systems, as a component of ...
« Continuous integration and delivery/deployment systems

What are these and

How do they relate

Best practices

Ideas to explore for your projects

24

Continuous integration

Purpose is to merge developer code changes into a shared
repository multiple times a day, with automated builds and tests

Includes:
Frequent commits (small, incremental changes)
Automated builds triggered on every commit
Automated tests for rapid feedback

Pros:
Early bug detection
Reduced integration headaches
Improved team collaboration

25

Continuous integration workflow example

1 PR Opened
In a shared repo (e.g., Github)
5 Change Detection
GitHub Actions detects the commit
o Automated Build
Build process begins
4 Test Suite Runs
Unit, integration tests, etc.
" Feedback Provided

Pass/fail, code coverage, etc.

Continuous Iintegration basics

« A Cl workflow is triggered when an event occurs in your [shared] repo
« Example events
* Push
 Pull request
* Issue creation

« A workflow contains jobs that run in a defined order Using GitHub
* Ajob s like a shell-script and can have multiple steps Cl terminology
e Jobs run in their own vm/container called a runner but concepts
« Example jobs span other ClI
 Run static analysis systems

« Compile, test
» Deploy to test, deploy to prod

27

Cl basics (w/ GitHub Cl) What SW architecture

does this appear to be

using?
m

Job 1 Job 2
Step 1: Run action Step 1: Run action
Step 2: Run script Step 2: Run script
Step 3: Run script Step 3: Run script

Actions are common

github tasks — leverage Step 4: Run action
those built-in or created/

by others (e.g., checkout)

28

Unit tests are triggered

Example: Cl with Github actions | onevey pusnornew

jobs:

test:
runs-on: ubuntu-latest

steps:

uses:
name:
uses:
with:
name:
uses:
with:
name:

run:

name:

run:

name:

run:

name: CI - UnitTesting
on: [push]

strategy: <2 keys>

actions/checkout@v3

Set up Python ${{ matrix.python-version }}
actions/setup-python@v3

<1 key>

Set up MongoDB ${{ matrix.mongodb-version }}
supercharge/mongodb-github-action@l.8.0

<1 key>

Install dependencies
python3 -..tall hatch

Pre-fly setup
cp $GITHU..GITHUB_ENV

Test with hatch

|

hatch run test:test

code

Workflow name
Trigger

Linux OS environment

Code reuse with
established “actions”

One command to run test suite 29

Let's look at some live Cl workflows

hannahpotter/manual-code-review-examples
See: .github/workflows

Real 403 project
See: itruns lint and code coverage report too

30

Cl vs CD: What's the difference?

Continuous Integration (Cl)

* Devs regularly integrate code into a shared repository

* System builds/tests automatically with each update

* Complements local developer workflows (e.g., may run diff tests)

* Goal: to find/address bugs quicker, improve quality, reduce time to
get to working code

Continuous Deployment/Delivery (CD)

* Builds on top of Cl (/)
* Automatically pushes changes to [staging environment and then]
production

* Goal: always have a deployment-ready build that has passed
through a standardized testing process

CD vs CD: What's the difference?

Continuous integration

@ © AUTOMATED > @ © AUTOMATED > @ >@

Version control Build Staging Production
Commit changes Build and unit tests Deploy to test env Deploy to prod
Integration tests, load tests, etc. Monitor
\ l

|
Staging before Production is

very typical of industry
practices

32

CD vs CD: What's the difference?

Why would you not
always automatically
deploy to prod?

1

Continuous integration
Approve deploy 9

Continuous delivery
Auto deploy o
Continuous deployment

@ © AUTOMATED > @ © AUTOMATED > @ >@

Version control Build Staging Production
Commit changes Build and unit tests Deploy to test env Deploy to prod
Integration tests, load tests, etc. Monitor
\ l

|
Staging before Production is

very typical of industry
practices

Amazon example

CD vs CD: What's the difference?

Continuous Delivery
Codebase is always in a deployable state
May require manual approval to push to production
Common for mobile apps due to app store review process

Continuous Deployment
Fully automated release process to production
No manual steps once tests pass

Common for web sites & backend systems

Milestone 04: Research, evaluate and choose
a Cl system for your project

O == £33

Hosted Services Self-Managed Tools Supporting Technologies

* GitHub * Jenkins * Docker for
Actions » TeamCity containerization
« GitLab CI/CD « Bamboo * Kubernetes for
* CircleCl container orchestration
* Travis Cl * Infrastructure as Code

« Buildkite (Terraform, Ansible)

35

Consider these CI/CD scenarios...

No automated CI/CD system

Manual build, integration, and releases

Limited or no automated testing

Long feedback loops

Business impact?

No automated CI/CD system S B9

Manual build, integration, and releases &
* Large, infrequent code merges lead to conflicts discovered late
* Error-prone and time-consuming deployment steps

Limited or no automated testing
« Bugs often caught in production
 High risk of downtime

Long feedback loops
« Delayed discovery of issues
» Slow response to user needs or market changes

High cost business impact

. 7\
Poorly implemented CI/CD system ,?a
+ Incomplete or rarely used pipelines

« Minimal test coverage

- Unreliable pipelines

* Business impact?

7\

Poorly implemented CI/CD system £ S

Incomplete or rarely used pipelines
Build/test stages not automatically triggered, skipped or inconsistent

Minimal test coverage

« Automated tests exist but don't cover critical functionality

* Production bugs still leak through

* False sense of security when pipelines pass without catching issues

Unreliable pipelines
Frequent pipeline failures without clear resolution

Teams lose trust and revert to manual processes

* High cost business impact

~

)))

Robust CI/CD system

Fully automated build & test pipeline

Every commit triggers a build and thorough suite of tests
1 Faster feedback; issues discovered and fixed early

Frequent, small releases

2 Easier to deploy, roll back if necessary, and reduce release
risk; Users see new features and fixes quickly

High confidence in deployment

3 Well-defined gating stages ensure only stable code is
promoted; Post-deployment monitoring and automatic
rollback if critical failures occur

Positive business impact

Faster time-to-market, improved quality & reliability,
enhanced developer productivity, strong DevOps culture

N

Summary

« Automate, automate, automate
everything!

« Always use a build tool (one-step
build)

« Use a Cl tool to build and test your
code on every commit

« Don’t depend on anything that's
not in the build file

« Don’t break the build!

42

Appendix - Topological sort example

Build systems: topological sort

compile
Lib

compile
Main

What's the indegree of each node?

44

Build systems: topological sort

compile
Lib

compile
Main

Build systems: topological sort

compile
Lib

compile
Main

Build systems: topological sort

9 0
compile
Lib

(%)
compile
Main

47

Build systems: topological sort

9 0
compile
Lib
(%)
compile
Main

48

Build systems: topological sort

9 0
compile
Lib
(%)
compile
Main

49

Build systems: topological sort

Valid sorts:

compile
Lib

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test
compile
Which is preferable? Main

Let's try writing our own simple Cl workflow

Follow along at:
https://github.com/alv880/UW-CSE403-Alv-Projects

Github Actions resource:

https://docs.github.com/en/actions/learn-github-actions/understanding-
github-actions

51

Example: Cl at work in CSE

(& @) https://www.labinthewild.org o &8 A W% o o= R t
La b I n The WI | d Our Experiments Findings & Data Sets Blog For Researchers About Us English ~
Is a research 1,137
prOjeCt d raWing i LA B IN T H E WH_D ast participants from Australia
month

survey input
from diverse

QO o .
Nigini Oliveira N TR &=
h What is your decision-making style? What's your personality? Can you tell the nutritional content of
UW researcher a plate?
r OVI d e d th i S You are making decisions every day. Have you You will learn about the five main traits of your Take this study to see if you can accurately tell
p wondered what kind of decision-making styles personality and how you score on them. We the nutritional content of a plate. See if you are
I you have? Take our test and you will learn will also try to establish the relationship more accurate than the average! An Al
exa m p e more about it! between personality and physical activity assistant will help you along the way.
goals.
Participate now! Participate now! Participate now!

S e

Example: Cl with Github actions

(' Search or jump to... Pull requests Issues Codespaces Marketplace Explore

& labinthewild / LITW-API Private ¢z EditPins ~ @Unwatch 2 ~

<> Code () Issues 3 I Pulirequests 1] () Actions [Projects 1 @) Security [~ Insights 83 Settings

< CI - UnitTesting
@ Cl Tests run only on push for now. PL + Push was duplicating runs. #15

l (A) Summary

Triggered via push 1 minute ago Status Total duration Arti
Jobs @ nigini pushed -o Oeafd05 ci_tests Success 1m 26s -
@ test (3.11,6.0)
Run details ci-test.yml

on: push
5 Usage

Matrix: test

&Y Workflow file

@ 1 job completed

Show all jobs

Let's try writing our own simple workflow

Follow along at:
https://github.com/alv880/UW-CSE403-Au23-Projects

Real 403 project example at:

https://github.com/amgupta2/IntelliCue/blob/main/.github/workflo
ws/clL.yml

Nice light starter tutorial — Automation Step by Step:
https://www.youtube.com/watch?app=desktop&v=ylEy4elLdhFs

54

Let's look at a Cl workflow from a CSE 403
project

= O mc-quest / mc-quest & Q Type (/] to search 8 ~ + -

<> Code () Issues 1 1 Pull requests 5 ® Actions [Projects @ Security |~ Insights

-quest / .github / 3

Connor's

team'’s Need updating — Can a TA demo their
repo Cl workflow

y1 connorrein Update issue templates (#31) 2a801d1-2

ame Last commit message

ISSUE_TEMPLATE Update issue templates (#31)

> [core M workflows Feature: Cl (#15)
> [gradle

> BB reports
> BB scripts
> B server

M Aitinnare

Example: continuous deployment with
GitHub Pages (https://pages.github.com/)

&« > C & https://nigini.github.io/SWEng/ G

./ SWEng

Content R—
updates trigger

publishing the Introduction to SW Engineeting
website update

This material is heavily inspired by (and sometimes copied with permission from) the U

e by René Just.

lectures if you practice the discussed concepts and principleds. There is a catch: the project is a
vehicle, not the outcome. Your ability to deal with the tools and techniques created throughout the
history of Software Engineering is the place you should pay attention to.

WHAT?

Let’s get this out of the way: what is Software Engineering?

1. A more formal way to see it: “an engineering discipline (hence, uses science to improve
applicability and efficiency) that is concerned with all aspects of software production.” — Ian
Sommerville

. The way we will kind of see it here: a set of principles to design, develop, maintain, test, and
evaluate computer software.

. Also: A whole research field that study what such principles are and what tools can support to
deliver better software.

Example: continuous deployment config

& nigini/ SWEng Pubiic

<> Code (%) Issues 4 i1 Pullrequests 9

i3 General

Access
Ay Collaborators

) Moderation options

Code and automation
¥ Branches

© Tags

£} Rules

() Actions

& Webhooks
Environments

%
I =] Pages

(® Actions [J Projects [0 Wiki () Security |~ Insights| 3 Settings

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages frc

Your site is live at https:/nigini.github.io/SWEng/
Last deployed by @ nigini 2 days ago

Build and deployment

Source

Deploy from a branch ~

Branch
Your GitHub Pages site is currently being built from the main branch. Learn more.

¥ main ~ B / (root) ~ Save

Learn how to add a Jekyll theme to your site.

57

Example: continuous deployment config

2 nigini/ SWEng Pubic

<> Code (%) Issues 4 11 Pullrequests 9 () Actions | [Projects [0 Wiki () Security |~ Insights 3 Settings

@ pages build and deployment #52

I (n) Summary

(\ Triggered via dynamic 2 days ago Status Total duration Artifacts
e & nigini -o- 4169aa2 Success 52s 1
@ build / \
@ report-bulld-status pages-build-deployment
° deploy on: dynamic
Run details
(9 Usage @ build 24s @ report-build-status 2s
@ deploy 7s

\ https://nigini.github.io/SWEng/ j
58

