Software Design

CSE 403 Software Engineering
Winter 2026

Project Tips

Celebrate your brand — use your
product name as a title in all your
materials

Today's Outline

1. Quick recap — architecture vs design
2. Some practical design considerations
3. Class quiz on coding styles in PollEv ©

Required readings are posted on the Calendar
Read ahead about doing Code Reviews — activity this Friday

See also Appendix in this deck for a short primer on design
material, including UML

Weekly status reports are now required

CSE 403: Software engineering Home Calendar | Project Syllabus

Weekly status reports

Weekly status reports help to plan and reflect on tasks, and keep the staff and yourselves informed about
your progress.

Due in github each
Wednesday 11:59pm

1. Project status

Each weekly project status report must include the following sections, with each section written in bullet

points:

. ¢ High level goal. Describe in one line the overarching goal of your next release, which may take multiple
InCIUde a ny q u eStlonS for weeks to achieve. Example: Develop frontend to backend working software for the Beta Release,
Staff showcasing feature X. This serves to keep everyone aligned with the overall vision to which you're

working.
* Original goals for the week. This section should be an exact copy of the last section from last week (i.e.,
Deta | IS on"P roject” ta b Of goals from a week ago). It can be empty for the first week.
. ¢ Progress and issues. Report on progress and issues: what you did, what worked, what you learned,

CIaSS Webs |te where you had trouble, and where you are blocked.

¢ Questions for the product owner. List any questions for your TA to be discussed in your Thursday
project meeting.

* Goals for next week. Outline your plans and goals for the following week. Each bullet point should
include a measurable task and a time estimate (no longer than a week). We recommend that you label

these with the student(s) who is responsible for the item.

Each weekly status report must be committed to your project git repository inside a top-level directory
called Status Reports. Each weekly report should be in its own file named projectname-YYYYMMDD, using the
date of the report, and be committed each Wednesday by 11:59pm. We recommend using a markdown doc
for your report, which is most popular with github, however you may use a filetype of your choice.

High level overview from last class

éaomd juswdo|anaq

Requirements

Architecture
Design

Source code

Level of abstraction>

The level of abstraction is key

uses

» With both architecture and design,
we're building an abstract
representation of reality

* Architecture - what components
are needed, and what are their
connections

* Design - how the components
themselves are developed

/ N
View Controller
upda\& manipulates

Model
\\

Object-oriented design [programming]

Focus on the data during design

» Each object (class instance) represents a thing
» Encapsulation: all information about the thing, in fields
« Computation is handled within the object
* Information hiding
» Behavior matters, clients aren't dependent on the implementation
« Communication is only by sending messages
 Subtyping and subclassing
 Subtyping: substitutability
 Subclassing: inherit implementation

Does this differ from functional design [programming]?

Object oriented design principles
(331 refresh)

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance

Liskov substitution principle
Composition/aggregation over inheritance

o vk wn =

1. Information hiding

private

public

MyClass

public class MyClass {

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

public int nElem;

public int capacity;
public int top;

public int[] elems;
public boolean canResize;

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

public void resize(int s){...}
public void push(int e){...}
public int capacitylLeft(){...}
public int getNumElem(){...}
public int pop(){...}

public int[] getElems(){...}

What does this class do?

1. Information hiding

Stack

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

Anything that could be improved in this implementation?

public class Stack {

public
public
public
public
public

public
public
public
public
public
public

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){..
void push(int e){...}
int capacitylLeft(){..
int getNumElem(){...}

int pop(){...}

int[] getElems(){...}

-}
-}

1. Information hiding

Stack

+ - elems : int[]

+

+ » + push(e:int):void

+ + pop():int

+ o o

+ resize(s:int):veid . o

+ push(e:int):void Information hiding:

+ capacityleft():int e Reveal as little information
tNumE1l cint : .

: ﬁf;p(‘)“?ini"‘() o about internals as possible

+ getElems():int[] « Segregate public interface

and implementation details
* Reduces complexity

2. Polymorphism

An object’s ability to provide different behaviors

Types of polymorphism:

« Ad-hoc: (e.g., operator overloading)
a+b = string vs. int, double, etc.

« Subtype: (e.g., method overriding)
Object obj = ..;; = toString() can be overridden in subclasses
obj.toString(); and therefore provide a different behavior

« Parametric: (e.g., Java generics)
class LinkedList<E> { = LinkedList can store elements regardless of
void add(E) {...} their type but still provide full type safety
E get(int index) {...}

11

2. Polymorphism

An object’s ability to provide different behaviors

Types of polymorphism:

« Subtype: (e.g., method overriding)
Object obj = ..;; = toString() can be overridden in subclasses
obj.toString(); and therefore provide a different behavior

Subtype polymorphism is essential to many good OO designs (and design
principles)

12

3. Open/closed principle

Software entities (classes, components, etc.) should be:
« open for extensions
* closed for modifications

public static void draw(Object o) {
if (o instanceof Square) { Square
drawSquare((Square) o)
} else if (o instanceof Circle) { + drawSquare()
drawCircle((Circle) o);
} else {
e Circle
) } + drawCircle()

Good or bad design?

3. Open/closed principle

Software entities (classes, components, etc.) should be:

open for extensions
closed for modifications

} else if
drawCircle(
} else {

instanceof Circle) {
ircle) o);

} e

}

Circlé\\\

+ drawCircle(S\

Violates the open/closed principle!

14

3. Open/closed principle

Software entities (classes, components, etc.) should be:
« open for extensions
* closed for modifications

public static void draw(Object s) .
{ <<interface>>
if (s instanceof Shape) { Shape
s.draw();
} else { + draw()
oo *
I
F} - - - - loooooo S
public static void draw(Shape s) Square Circle
{
s.draw(); Use inheritance (specialization)
}

4. Liskov substitution principle

Motivating example
We know that a square is a special kind of a rectangle. So,
which of the following OO designs makes sense?

Square Rectangle

Rectangle Square

X—>Y if X is a subtype of Y

4. Liskov substitution principle

Subtype requirement:
» Let object x be of type T1 and object y be of type T2
» Let T2 be a subtype of T1 (T2 <: T1)

« Any provable property about objects type T1 should be true for objects type T2

Rectangle Rectangle-T1

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int Square-T2

Is the subtype requirement fulfilled?

4. Liskov substitution principle

Subtype requirement:

» Let object x be of type T1 and object y be of type T2

» Let T2 be a subtype of T1 (T2 <: T1)

« Any provable property about objects type T1 should be true for objects type T2

Rectangle r = _
Rectangle new Rectangle(2,2); Rectangle-T1

+ width :int
+ height:int

int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | | r. setwidth(w * 2);

+ getArea():int Square-T2

assertEquals(A * 2,
r.getArea());

4. Liskov substitution principle

Subtype requirement:

» Let object x be of type T1 and object y be of type T2

» Let T2 be a subtype of T1 (T2 <: T1)

« Any provable property about objects type T1 should be true for objects type T2

Rectangle r =

Rectangle Le(2,2)1 Rectangle-T1
+ width :int new Square(2);
+ height:int
int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | |p setWidth(w * 2);

+ getArea():int Square-T2

assertEquals(A * 2,
r.getArea());

4. Liskov substitution principle

Subtype requirement:

» Let object x be of type T1 and object y be of type T2

» Let T2 be a subtype of T1 (T2 <: T1)

« Any provable property about objects type T1 should be true for objects type T2

N\

Rectangle Rectangle r . N \%e\ctangle—Tl
+ width :int new Square(2);

+ height:int

int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | | r setwidth(w * 2);

+ getArea():int Square-T2

assertEquals(A * 2, _
p.getAr\ea()); V|O|ate5 the

Liskov substitution principle!

4. Liskov substitution principle

Subtype requirement:
» Let object x be of type T1 and object y be of type T2
» Let T2 be a subtype of T1 (T2 <: T1)

« Any provable property about objects type T1 should be true for objects type T2

Rectangle <<interface>>
+ width :int Shape
+ height:int t
I
+ setWidth(w:int) | == =- L - |
+ setHeight(h:int) '
+ getArea():int Rectangle Square

Better design

Adopt SOLID design principles

Single-responsibility: Focus on doing one thing well. There should never be more
than one reason to modify a class. Every class should have only one responsibility.

Open—closed: Can extend behavior without knowing the implementation - open
for extension, closed for modification

Liskov substitution: Code written to use a base class works with objects of derived
classes. Subtypes have stronger specifications.

Interface segregation: Minimality and composability of interfaces. Don't force
clients to depend upon or implement interfaces that they do not use.

Dependency inversion: Depend upon abstractions, not concrete implementations.
High-level modules should be unaware of low-level modules.

Learn more: SOLID Design Principles

Adopt more tried-and-true principles

KISS principle (keep it simple, stupid)

YAGNI principle (you ain’'t gonna need it)

DRY principle (don’t repeat yourself)

High cohension, loose coupling principle (path to design success)

Learn more: Geeks for Geeks Design Principles

Design principles |v—

How about good patterns to learn and model
from?

24

Design patterns

« Tried and true solutions to commonly occurring
problems in software design

« Models that you can leverage or customize to solve
design problems in your code

« Address recurring, common design problems and
provide generalizable solutions — models — that you
can customize

« Provide a common terminology for developers

Creational, structural and behavioral patterns

Creational Design Patterns Structural Design Patterns = Behavioral Design Patterns

Simple Factory Adapter Chain of Responsibility
Factory Method Bridge Command
Abstract Factory Composite Iterator
Builder Decorator Mediator
Prototype Facade Memento
Singleton Flyweight Observer
Proxy Visitor
Strategy A list from
Design Patterns
State for Humans

Template Method

(see Calendar)

26

Creational design patterns

« Focus on the process of object creation and problems/complexity
related to object creation

« Help in making a system independent of how its objects are created,
composed and represented

« Example: Simple Factory pattern

Scenario: want to hide all the instantiation logic from the client

Simple Factory pattern: provides a clean way to generate an instance for a
client without exposing instantiation logic to the client

interface Door { class DoorFactory {
public function getWidth(): float;

public function getHeight(): float; public static function makeDoor(Swidth, Sheight): Door
} {
return new WoodenDoor(Swidth, Sheight);
class WoodenDoor implements Door { }
protected Swidth;
protected Sheight; }

public function _construct(float Swidth,

float Sheight){ Sdoorl = DoorFactory::makeDoor(100, 200);
Sthis->width = Swidth;

fthis->height = Sheight; Sdoor2 = DoorFactory::makeDoor(50, 100);

public function getWidth(): float {
return Sthis->width;
}

public function getHeight(): float {

return Sthis->height; Example from:
} https://github.com/kamranahmedse/design-patterns-for-humans

Structural design patterns

« Solve problems related to how classes and objects are composed
to form larger structures that are efficient and flexible

« Often use inheritance to compose interfaces or implementations

« Example: Fascade pattern

English definition: an outward appearance that is maintained to conceal a
less pleasant reality

Scenario: provide a simple interface to a complex subsystem

Fascade pattern: a facade is an object that provides a simplified interface
to a larger body of code

class Computer {
public function getElectricShock() {..}
public function makeSound() {..}
public function showlLoadingScreen() {..}
public function bam() {..}
public function closeEverything() {..}
public function sooth() {..}
public function pullCurrent() {..}

Scomputer = new ComputerFacade (new Computer());
Scomputer->turnOn();
Scomputer->turnOff()

class ComputerFacade {
protected Scomputer;

public function __construct (Computer Scomputer) {
Sthis->computer = Scomputer;

}

public function turnOn() {
Sthis->computer->getElectricShock();
Sthis-computer->makeSound();
Sthis->computer->showLoadingScreen();
Sthis->computer->bam();

}

public function turnOff() {
Sthis->compute->closeEverything();
Sthis->computer->pullCurrent();
Sthis->computer->sooth():

Example from:
https://github.com/kamranahmedse/design-patterns-for-humans

Behavioral design patterns

Solve problems related to responsibilities and
communication between objects

Describe not just patterns of objects or classes but also the
patterns of communication between them

ldentify common communication patterns between objects
and realize these patterns

Example: Mediator pattern

o Scenario: want to minimize/avoid direct complex dependencies
between objects (strive for loose coupling), and/or have
centralized coordination

interface Airplane {
void requestTakeoff();
void requestLanding();
void notifyAirTrafficControl(String message);

}

class CommercialAirplane implements Airplane {
private AirTrafficControlTower mediator;

public CommercialAirplane(AirTrafficControlTower
mediator) {
this.mediator = mediator;

}

public void requestTakeoff() {
mediator.requestTakeoff (this);

}

interface AirTrafficControlTower { // Mediator
void requestTakeoff(Airplane airplane);
void requestLanding(Airplane airplane);

}

class AirportControlTower implements AirTrafficControlTower {
public void requestTakeoff(Airplane airplane) {
//
// Complex logic for coordinating takeoff
//
airplane.notifyAirTrafficControl("Requesting takeoff
clearance.");

}
}

AirTrafficControlTower controlTower = new AirportControlTower();
Airplane airplane1 = new CommercialAirplane(controlTower);
Airplane airplane2 = new CommercialAirplane(controlTower);
airplane1.requestTakeoff();

airplane2.requestLanding();

Example from:
https://www.geeksforgeeks.org/mediator-design-pattern/

Like most things, design patterns have
pros and cons

Pros

« Provide a common language for developers (including interviewing)

« Can improve communication and documentation

« "Toolbox" for devs to leverage known solutions to a known problems
(don't reinvent the wheel)

Cons

« Can get swept into thinking a pattern fits when it does not

« Or using one when there is a better — built in — solution in the
language or dev toolkit that you're using

« Can add complexity when it's not needed

Some good design patterns references

e https://github.com/kamranahmedse/design-patterns-for-humans

o Nice overview with examples

e https://www.patterns.dev

o Java, React, Nexts, Vue.js examples

e https://refactoring.guru/design-patterns/catalog

o Some motivating examples

e https://www.geeksforgeeks.org/software-design-patterns/

o Tutorial like with examples

34

Let's look at code
and
assess Its style

https: //PollEv.com/cse403wi

Quiz setup

» Work in small groups of neighboring students _ .

C
=
=\-% A

A

Individually register your answer in PollEv

6 code snippets

Round 1 (PollEv)
 For each code snippet, decide if it represents good or bad practice
* Discuss and reach consensus on good or bad practice and why

Round 2 (Poll results and class discussion)
For each code snippet, share opinions on why it is good or bad practice
. Goal: common understanding of good styles and alternatives to bad ones

36

Round 1: good or bad?

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files

File[] allLogs = new File[numLogs];

for (int i=0; i<numLogs; ++i) {
allLogs[i] = .. // populate the array

}

return alllogs;

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;
¥
if (y<0) {
y = -V
¥

return Math.max(x, y);

}

Snippet 5: good or bad?

public class ArrayList<E> {
public E remove(int index) {

}

public boolean remove(Object o) {

}

Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
}
public int getX() {
return this.x;
}
public int getY() {
return this.y;

}

“u

Design Quiz - Good or bad?

0 surveys completed

0 surveys underway

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Round 1: good or bad?
Round 2: why?

45

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files

File[] allLogs = new File[numLogs];

for (int i=0; i<numlLogs; ++i) {
allLogs[i] = .. // populate the array

}

return alllogs;

And the survey says ...

YA/ snippett: getailLogs

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files

File[] allLogs = new File[numLogs];

for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array

}

return alllogs;

49

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array

}

return alllogs;

Null references...the billion dollar mistake.

Apologies and retractions P4

Speaking at a software conference named QCon London!?4l in 2009, he
apologised for inventing the null reference:[2°!

I call it my billion-dollar mistake. It was the
invention of the null reference in 1965. At that
time, I was designing the first comprehensive type
system for references in an object oriented
language (ALGOL W). My goal was to ensure that

all use of references should be absolutely safe, with
Tony Hoare checking performed automatically by the compiler.
But I couldn't resist the temptation to put in a null

* Programming languages
* Concurrent
programming implement. This has led to innumerable errors,

* Quicksort vulnerabilities, and system crashes, which have

probably caused a billion dollars of pain and

reference, simply because it was so easy to

damage in the last forty years.

51

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array

}

return alllogs;

}

File[] files = getAlllogs();
for (File f : files) {

}

Don’t return null; return an empty array instead.

52

Snippet 1: this is bad! why? i?

\
public Fi tAlllegs{Pirectory—dir)—
if (dir == null || !dir.exists() || dir.isEmpty()) {
return nulil;

} else {
int numLogs = .. // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numlLogs; ++i) {
alllLogs[i] = .. // populate the array
}

return alllogs;

No diagnostic information.

53

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

And the survey says ...

YA/ snippet2: addstudent

Snippet 2: short but bad! why? f?

public void addStudent(Student student, String
course) {
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

¥

]

56

Snippet 2: short but bad! why? j?

\
—

public void addStudent(Student student, String
course) {

if (course.equ51;13§5E4@3"

cse403Students.add(student);
}

allStudents.add(student)

| Y|

Use constants and enums to avoid literal duplication.

57

Snippet 2: short but bad! why?

\

?

public ddStudent(Student student, String
course)
if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

}]

Consider always returning a success/failure value.

58

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

And the survey says ...

YA/ snippets: PaymentType

Snippet 3: this iIs good, but why? 79?
£

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

61

Snippet 3: this iIs good, but why? i?

public @nﬂype {DEBIT@

public void doTransaction(double amount,(PaymentType payType) {

switch (payType) {

case DEBIT:
.. // process debit card
break;

case CREDIT:
.. // process credit card
break;

default:

hrow new IllegalArgumentException("Unexpected paymenE_EXBg:);/

A4

Type safety using an enum; throws an exception for unexpected
cases (e.g., future extensions of PaymentType).

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;
}
if (y<0) {
y = -Ys
¥

return Math.max(x, y);

And the survey says ...

YA/ snippets: getabsmax

Snippet 4. also bad! huh?

public int getAbsMax(int x, int y) {
if (x<0) {
X = -X;
¥
if (y<0) {
y = -V
¥

return Math.max(x, y);

¥

65

Snippet 4. also bad! huh?

public int getAbsMa{

if (x<0) {

}
if (y<9) {
}

return Math.max(x, y);

s

Consider if these are Method parameters should be final (sacred);
pass by reference... use local variables to sanitize inputs.

]

66

Snippet 5: good or bad?

public class ArrayList<E> {
public E remove(int index) {

}

public boolean remove(Object o) {

eee
eee

And the survey says ...

YA/ snippets: ArrayList

Snippet 5: Java API, but still bad! why? ;’?

public class ArraylList<E> {
public E remove(int index) {

}

public boolean remove(Object o) {

}

)

Snippet 5: Java API, but still bad! why? 73?
s
P ublic.Eecemove(int indexp

}
public boolea {

}

- ®

ArrayList<String> a = new ArrayList<>();
Integer index = Integer.valueOf(1);
a.add(“Hello”);

a.add(“World”); What does the last call return
a.remove(index); (a.remove(index))?

70

Snippet 5: Java API, but still bad! why? i?

public class ArraylList<E> {
public t index) {

}
public Object o) {
}

- ®

ArrayList<String> a = new ArrayList<>();

Integer index = Integer.valueOf(1);

a.add(“Hello”);

a.add(“World”); Avoid overloading with

a.remove(index); different return values.

71

Snippet 5: Java API, but still bad! why? i?
P public Eccenore(int ndsED |

}
public boolea {

}

- ®

ArrayList<String> a = new ArrayList<>();

Integer index = Integer.valueOf(1);

a.add(“Hello”);

a.add(“World”); Avoid method overloading,

a.remove(index); which is statically resolved.

72

Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
¥
public int getX() {
return this.x;
}
public int getY() {
return this.y;

}

}

And the survey says ...

YA/ snippets: Point

Snippet 6: this is good,

but why? Z)?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
}
public int getX() {
return this.x;
}
public int getY() {
return this.y;

}

75

Snippet 6: this is good, but Why?i?

public clas
private final int x;

—_private final int y;
public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;

}
public int getY() {

return this.y;

}

Good encapsulation; immutable object.

All for now on design and style

« We'll do a light look at UI/UX design later in the course — see also, CSE
440 - Intro to HCI (Human Computer Interaction)

 Review the readings on the Calendar and the design primer in the
following slides to refresh your knowledge of design considerations for
your project and assignment: 03 Architecture and design milestone

77

Additional Design Material

Provided by René Just, UW CSE Professor

Concepts traditionally covered in CSE 331 — Software design and
implementation

UML crash course

UML crash course

The main questions

e Whatis UML?

e |s it useful, why bother?
e When to (not) use UML?

What is UML?

Unified Modeling Language.
Developed in the mid 90's, improved since.
Standardized notation for modeling OO systems.

A collection of diagrams for different viewpoints:
o Use case diagrams

Component diagrams

Class and Object diagrams

Sequence diagrams

Statechart diagrams

o O O O O

What is UML?

Unified Modeling Language.
Developed in the mid 90's, improved since.
Standardized notation for modeling OO systems.

A collection of diagrams for different viewpoints:
Use case diagrams B
Component diagrams o =" —

@]

© { L)

o Class and Object diagrams] =

o Sequence diagrams \ & GG—=%

o Statechart diagrams N s -~ '

° T\ @D==
'\‘\"\'ff‘;-__:. » -
=<

What is UML?

Unified Modeling Language.

Developed in the mid 90's, improved since.
Standardized notation for modeling OO systems.
A collection of diagrams for different viewpoints:

o Use case diagrams :
Component diagrams .
Class and Object diagrams =
Sequence diagrams = 1= ==
Statechart diagrams ——

© O O O O

Are UML diagrams useful?

ux U—C”J

canf
Cook
Food
® Che'
”'"““’)i (If wine v ardersd }
—(comd
(iIfwine
wm
arad }

84

Are UML diagrams useful?

Communication

e Forward design (before coding)
o Brainstorm ideas (on whiteboard or paper).
o Draft and iterate over software design.

Documentation

e Backward design (after coding)
o Obtain diagram from source code.

In this class, we will use UML class diagrams mainly for visualization
and discussion purposes.

85

Classes vs. objects

Class

e Grouping of similar objects.
o Student
o Car
e Abstraction of common properties and behavior.
o Student: Name and Student ID
o Car: Make and Model

Object
e Entity from the real world.

e Instance of a class
o Student: Joe (4711), Jane (4712), ...
o Car: Audi A6, Honda Civig, ...

UML class diagram: basic
notation

MyClass

UML class diagram: basic
notation

MyClass

- attrl :

type

+ foo()

: ret_type

Name

Attributes
<visibility> <name> : <type>

Methods

<visibility> <name>(<param>*) :

<return type>
<param> := <name> : <type>

UML class diagram: basic

notation

MyClass

- attrl : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods

<visibility> <name>(<param>*) :

<return type>
<param> := <name> : <type>

Visibility

private
package-private
protected

+ public

Z

UML class diagram: basic
notation

Name
MyClass
- attrl : type Attributes
attr2 : type <visibility> <name> : <type>
+ attr3 : type

Static attributes or methods are underlined

~ bar(a:type) : ret type 4

+ foo()

: ret_type

/ Methods

<visibility> <name>(<param>*) :
<return type>

<param> := <name> :@ <type>

Visibility

- private

~ package-private
protected

+ public

UML class diagram: concrete example

public class Person { Person
}
public class Student Student

extends Person {

private int id; - id

¢ int

public Student(String name,

)) + Student(name:String, id:int)
int id) {

+ getId() : int
}

public int getId() {
return this.id;
}
}

Classes, abstract classes, and interfaces

MyClass

MyAbstractClass <<interface>>
{abstract} Mylnterface

Classes, abstract classes, and interfaces

MyClass

MyAbstractClass
{abstract}

<<interface>>
Mylnterface

public class MyClass {

public void op() {
}
public int op2() {

}
}

public abstract class
MyAbstractClass {

public abstract void op();

public int op2() {

}
}

public interface
MyInterface {

public void op();

public int op2();
}

Level of detail in a given class or interface may vary and depends on

context and purpose.

UML class diagram: Inheritance

SuperClass <<interface>>

Anlnterface
v

/7
7/

. . . 7/
is-a relationship e
e

7/
7’
7/

SubClass

public class SubClass extends SuperClass implements AnInterface

UML class diagram: Aggregation and

Composition

Aggregation

Part

J>has—a relationship

Whole

® Existence of Part does not depend
on the existence of Whole.

e Lifetime of Part does not depend
on Whole.

e Nosingle instance of whole is the unique
owner of Part (might be shared with other
instances of Whole).

Composition

Part

kas-a relationship

Whole

Part cannot exist without Whole.
Lifetime of Part depends on Whole.
One instance of Whole is the single
owner of Part.

Aggregation or Composition?

Room Customer

i b

Building Bank

Aggregation or Composition?

Composition Aggregation
Room Customer
Building Bank

What about class and students or body and body parts?

UML class diagram: multiplicity

1 1
A B

Each A is associated with exactly one B
Each B is associated with exactly one A

1..2 *

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

UML class diagram: navi

A

gabilli

Navigability: not specified

Navigability: unidirectional
“can reach B from A”

>

Navigability: bidirectional

UML class diagram: example

«interface»
TimedDevice O

ReminderTimer

-actions: List<Action>

+preformTimedAction(a: Action)

-intervals: List<Integer>

-timedDevices: List<TimedDevice>

o 1 +remindDevices()

+registerDevice(timedDevice: TimedDevice, a: Action, interval: int)
+unregisterDevice(timedDevice: TimedDevice, a: Action)

CGMsensor

-receivers: List<CGMreceiver>

0..*

-measureAndSendMeasurement()
+pairReceiver(r: AbstractCGMreceiver)
+unpairReceiver(r: AbstractCGMreceiver)

«ennumeration»
Action

AbstractCGMreceiver

#batteryLevel: int
#minBatteryLevel: int
#maxHealthyLevel: int
#minHealthyLevel: int
#batteryAlert: Alert
#tooLowAlert: Alert
#tooHighAlert: Alert

#dailyData: Measurement[500]

BATTERY
GLUCOSE
INSULIN
BASAL
MEASURE

Pump

+checkBatteryLevel()
+setHighLevel(level: int)
+setLowLevel(level: int)
+lastindex(): ind

+addMeasurement(measurement: Measurement) Q\

-insulinLevel: int
-basalAmount: double
-carbRatio: int
-correctionFactor: int
-runningOutOfinsulinAlert: Alert

Alert

-message: String

+soundAlert()

.500

Measurement
-date: Date

-glucose: int

+getinsulinLevel(): int
+getBasalAmount(): int
+setBasalAmount(amount: int)
+getCarbRatio(): int
+setCarbRatio(ratio: int)
+getCorrectionFactor(): int
+setCorrectionFactor(factor: int)
-injectinsulin(amount: double)
+calculateBolus(carbs: int): int
+deliverBasal()
+checklnsulinLevel()

-fromFinger: boolean

+getDate(): Date
+getGlucose(): int
+isFromFinger(): boolean

100

Summary: UML

e Unified notation for modeling OO systems.
e Allows different levels of abstraction.
e Suitable for design discussions and

documentation.

OO design principles

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Information hidi

N9

MyClass

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

public
public
public
public
public

public
public
public
public
public
public

public class MyClass {

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){..
void push(int e){...}
int capacitylLeft(){..
int getNumElem(){...}

int pop(){...}

int[] getElems(){...}

-}
-}

Information hiding

MyClass

public class MyClass {

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

public int nElem;

public int capacity;
public int top;

public int[] elems;
public boolean canResize;

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

public void resize(int s){...}
public void push(int e){...}
public int capacitylLeft(){...}
public int getNumElem(){...}
public int pop(){...}

public int[] getElems(){...}

What does MyClass do?

Information hidi

N9

Stack

+ + + + +

nElem : int
capacity : int
top : int

elems : int[]
canResize : bool

+ + + + + +

resize(s:int):void
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

Anything that could be improved in this implementation?

public
public
public
public
public

public
public
public
public
public
public

public class Stack {

int nElem;

int capacity;

int top;

int[] elems;
boolean canResize;

void resize(int s){..
void push(int e){...}
int capacitylLeft(){..
int getNumElem(){...}

int pop(){...}

int[] getElems(){...}

-}
-}

106

Information hiding

+ + + + +

+ + + + + +

resize(s:int):veid
push(e:int):void
capacitylLeft():int
getNumElem():int
pop():int
getElems():int[]

Stack

- elems : int[]

+ push(e:int):void
+ pop():int

Information hiding:

® Reveal as little information
about internals as possible.

® Segregate publicinterface and
implementation details.

® Reduces complexity.

Information hiding vs. visibility

2??

Private

Information hiding vs. visibility

2?2

Private

Protected, package-private, or
friend-accessible (C++).

Not part of the public API.
Implementation detail that a
subclass/friend may rely on.

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

A little refresher: what is
Polymorphism?

JL

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.

Types of polymorphism
® Ad-hoc polymorphism (e.g., operator overloading)

o a+ b = String vs. int, double, etc.
® Subtype polymorphism (e.g., method overriding)
o Object obj = ...; = toString() can be overridden in subclasses
obj.toString () ; and therefore provide a different behavior.

® Parametric polymorphism (e.g., Java generics)
o class LinkedList<E> ({ = A LinkedList can store elements
void add(E) {...} regardless of their type but still
E get (int index) {...} provide full type safety.

112

A little refresher: what is Polymorphism?

An object’s ability to provide different behaviors.
Types of polymorphism
e Subtype polymorphism (e.g., method overriding)

o Object obj = ...; = toString() can be overridden in subclasses
obj.toString() ; and therefore provide a different behavior.

Subtype polymorphism is essential to many OO design principles.

113

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Open/closed principle

Software entities (classes, components, etc.) should be:
e open for extensions
e closed for modifications

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o) + draquuare()
} else if (o instanceof Circle) {
drawCircle((Circle) 0);
} else {

Square

Circle

}} + drawCircle()

Good or bad design?

Open/closed principle

Software entities (classes, components, etc.) should
be:
e open for extensions

+ drawSquare()

drawCircle((C3
} else {

Circle

+ drawCirclé}&\\

}...

}
Violates the open/closed principle\!

Open/closed principle

Software entities (classes, components, etc.) should be:
e open for extensions
e closed for modifications

public static void draw(Object s) { <<interface>>
if (s instanceof Shape) {
s.draw(); Shape
b oelse { + draw()
) i
} 1

- e o - -

public static void draw(Shape s) {
s.draw();

}

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Inheritance: (abstract) classes and
iInterfaces

Sequentiallist
{abstract}

LinkedList

Inheritance: (abstract) classes and
iInterfaces

LinkedList extends SequentiallList

Sequentiallist
{abstract}

;:;;;E\\\\\\\\

LinkedList

Inheritance: (abstract) classes and

Interfaces

LinkedList extends SequentiallList

Sequentiallist
{abstract}

<<interface>>
List

<<interface>>
Deque

;:;;;E\\\\\\\\

LinkedList

Inheritance: (abstract) classes and
iInterfaces

LinkedList extends SequentialList implements List, Deque

Sequentiallist| | <<interface>> | |<<interface>>
{abstract} List Deque

7'y Pl
impIementg/

'

implements
extends

7’
'
7’

|

|

' s
|

I s
|

LinkedList

Inheritance: (abstract) classes and interfaces

<<interface>> <<lnterface>>
Ilterable Collection

<<interface>>
List

Inheritance: (abstract) classes and
interfaces <<linterface>> <<interface>>

Iterable Collection

W

<<interface>>
List

List extends Iterable, Collection

Inheritance: (abstract) classes and interfaces

<<interface>> <<lnterface>>
Ilterable Collection

W &(tends

Sequentiallist| | <<interface>> | |<<interface>>

{abstract} List Deque
A b 4

. b d
|mplement§,’

'

implements
extends

7’
'
7’

|

|

' s
|

I s

|

LinkedList

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

The “diamond of death”: the
problem

A
+ getNum():int

>

A.é = new D(); C

int num = a.getNum(); i

+ getNum():int

/

The “diamond of death”: the

problem

A a = new D();

A
+ getNum():int

PN

B C

int num = a.getNum();

+ getNum():int + getNum():int

Which getNum() method
should be called?

\D/

The “"diamond of death”: concrete
example

Animal
+ canFly():bool

N

Bird Horse
+ canFly():bool + canFly():bool

'\/

Pegasus

Can this happen in Java? Yes, with default methods in Java 8.

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Design principles: Liskov substitution

principle

Motivating example

We know that a square (s a special kind of a rectangle.
So, which of the following OO designs makes sense?

Square

Rectangle

Rectangle

Square

Design principles: Liskov substitution

principle

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about

objects of type T1 should be true for objects of type T2.

Rectangle

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Square

s the subtype requirement fulfilled?

Design principles: Liskov substitution
principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle r =
new Rectangle(2,2);

Rectangle Rectangle

+ width :int
+ height:int

int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | | r setwidth(w * 2);

+ getArea():int Square

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution
principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle Rectangle r . N Rectangle
+ width :int new Square(2);
+ height:int
int A = r.getArea();

+ setWidth(w:int) int w = r.getWidth();

+ setHeight(h:int) | | r setwidth(w * 2);

+ getArea():int Square

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution
principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

N\

Rectangle Rectangle r = | \\\Bectangle
+ width :int new Square(2);

+ height:int

int A = r.getArea();
+ setWidth(w:int) int w = r.getWidth();
+ setHeight(h:int) | | r setwidth(w * 2);

+ getArea():int Square
assertEquals(A * 2,

Violates the Liskov &ibstitdtion principle!

Design principles: Liskov substitution
principle

Subtype requirement

Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle <<interface>>
+ width :int Shape
+ height:int t

+ setWidth(w:int) | = ==- L -

+ setHeight(h:int) :
+ getArea():int Rectangle Square

OO design principles

Information hiding (and encapsulation)
Polymorphism

Open/closed principle

Inheritance in Java

The diamond of death

Liskov substitution principle
Composition/aggregation over inheritance

Inheritance vs. (Aggregation vs. Composition)

Person Customer Room

i

Student Bank c Building

public class Student public class Bank { public class Building {
extends Person{ Customer c; Room r;
public Student(){ public Bank(Customer c){ public Building(){
} this.c = c; this.r = new Room();
} }
} } }
is-a relationship has-a relationship

138

Design choice: inheritance or composition?

List “List
<<interface>> I <<interface>>
yy ! yy
] |]

] 1]
LinkedList : LinkedList

|
T I
|
Stack Stack |H

public class Stack<E>

extends
LinkedList<E> {

List<E> {

}

Ijnkpdli<f<>();

public class Stack<E> implements

private List<E> 1 = new

Hmm, both designs seem Valid -- what are pros and cons?

Design choice: inheritance or
composition?

List > List
<<interface>> I <<interface>>
yy ! yy
] |]

] 1]

)) I))
LinkedList I LinkedList
|
I
|

T

Stack Stack |H

Pros Pros
e No delegation methods required. e Highly flexible and configurable:
e Reuse of common state and behavior. no additional subclasses required for
different compositions.
Cons
Cons

e Exposure of all inherited methods
(a client might rely on this particular
superclass -> can’t change it later).

e Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

e Allinterface methods need to be
implemented -> delegation methods
required, even for code reuse.

OO design principles: summary

Information hiding (and encapsulation)
Open/closed principle

Liskov substitution principle
Composition/aggregation over inheritance

OO design patterns

A first design problem

Weather station revisited

Current 30 day history
25° F ~
TN
39°C min: 20° F /\/U\J
max: 35° F Temp. sensor

Reset history
button

What's a good design for the
view component?

Temp.

min: 20° E Reset history

button
09/01,12°
09/02,14°

max: 35° F

144

Weather station: view

= = o =

<<interface>>
View

1..n
€

+draw(d:Data)

SimpleView

GraphView

View

ComplexView

+draw(d:Data)

+draw(d:Data) +draw(d:Data)

-views:List<View>

-3.9°C

min: 20° F
max: 35°F

+draw(d:Data)
+addView(v:View)

How do we need to
implement
draw(d:Data)?

Weather station: view

<<interface>> B 1..n

View
+draw(d:Data)
A
I
= = Em Em Em Em Em Em e Em e I el e e =
1 1 ! 1 <>
SimpleView GraphView .View ComplexView

+draw(d:Data) +draw(d:Data) +draw(d:Data) -views:List<View>

+draw(d:Data)
+addView(v:View)

25° F public void draw(Data d) {
4:::::::::::: for (View v : views) {

v.draw(d);
min: 20° F }

max: 35° F \z________,,,/////’//”—————_

-3.9°C

The general solution: Composite

pattern

<<interface>>
Component

<€

1..n

+operation()

CompA

CompB

+operation()

+operation()

Composite

-comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp (c:Component)

The general solution: Composite
pattern <<interface>>| 1..n

<€

Component
+operation()

Iterate over all composed
components (comps), call
operation() on each, and

f potentially aggregate the
I results.
=

|

|

_______________ /L_l/.7<>

CompA CompB Ccfm}{

+operation() +operation() -comps:Col/l%tion<€omponent>

+operatioﬂf)
+addComp (c:Component)
+removeComp (c:Component)

Another design problem: I/O streams

InputStream is = <<interface>>

new FileInputStream(...); hqputStreann
+read():int

int b; . gy
while((b=is.read()) != -1) { +read(buf:byte[]):int
}

// do something T
I
[
[
[

FileInputStream

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

InputStream is = <<interface>>
new FileInputStream(...); InputStream

] +read():int

int b; +read(buf:byte[]):int

while((b=is.read()) != -1) {

// do something)
I
I
I
I

FilelnputStream Problem: filesystem I/O is expensive

+read():int
+read(buf:byte[]):int

Another design problem: I/O streams

InputStream is = <<interface>>

new FileInputStream(...); hqputStrearn
+read():int

int b; . gy
while((b=is.read()) != -1) { +read(buf:byte[]):int
}

// do something)
I
I
I
I

FilelnputStream Problem: filesystem I/O is expensive

+read():int Solution: use a buffer!
+read(buf:byte[]):int

Why not simply implement the
buffering in the client or subclass?

151

Another design problem: I/O streams

InputStream is = <<interface>>

new BufferedInputStream(InputStream
new FileInputStream(...)); Tread():int

int b; . gy
while((b=is.read()) != -1) { +read(buf:byte[]):int
} 1

// do something t 1
|
I
I
I

: O
FileInputStream BufferedinputStream
+read():int

+read(buf:byte[]):int

-buffer:byte[]

+BufferedInputStream(is:InputStream)
L+read():int

e e — |
from its buffer, which is filled by calling | +read(buf:byte[]):int

The general solution: Decorator

pattern

<<interface>>
Component

1

<€

+operation()

CompA

+operation()

CompB

+operation()

Decorator

-decorated:Component

+Decorator(d:Component)
+operation()

Composite vs. Decorator

<<interface>>
Component

+operation()

Composite

CompA

Decorator

-comps<Z§iiE£Eion<ComE££zE£S> +operation()

+operation()
+addComp (c:Component)
+removeComp (c:Component)

-decorated

+Decorator(d:Component)
+operation()

Properties of a good software design

Motivation
Each concept should be motivated by at least one purpose

Coherence
Each concept should be motivated by at most one purpose

Properties of a good software design

Fulfillment

Each purpose should motivate at least one concept
Non-division

Each purpose should motivate at most one concept

Properties of a good software design

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose

