
Architecture
CSE 403 Software Engineering
Winter 2026

Today’s Outline

Architecture
1. What do we mean by architecture
2. How does it differ from design
3. What are some common architecture patterns used in software
4. What to consider as you create your architecture

See readings on the Calendar

2

See readings posted on the calendar for more software architecture
examples

Short video on merge-conflict material is in Panopto (01-21-26 lecture)

What does “Architecture” make you think of?

Paul G. Allen Center by LMN Architects MIT Stata Center by Frank Gehry

3

In contrast, what comes to mind with “Design”?

4

Here’s another example close to home

Bill & Melinda Gates Center for UW CSE - LMN

5

Let’s transition the ideas to software
engineering

Requirements

Architecture

Design

Source code

D
e

ve
lop

m
en

t p
roce

ss L
ev

e
l o

f a
b

st
ra

ct
io

n

6

The level of abstraction is key

With both architecture and design, we’re building an
abstract representation of reality

• Ignoring (insignificant details)
• Focusing on the most important properties
• Considering modularity (separation of concerns) and

interconnections

7

High level definitions
Software Architecture (what components and inter-connections are needed)
• Set of structures needed to reason about a software system
• Functions as the blueprints for the system and its development
• Provides a high-level view of the overall system:

• What are the components
• What are the connections and/or protocols between components

Software Design (how the components are developed)
• Considers one component at a time

• Data representation
• Interfaces, class hierarchy

8

Case study - abstraction - Linux kernel

Source code

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?

9

Case study – Linux kernel

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?

Call graph

10

Case study – Linux kernel

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?
• Are there dependencies?

Dependency graph

11

Case study – Linux kernel

Suppose you want to add a feature
16 million lines of code!

Where would you start?

• What does the code do?
• Are there dependencies?
• What are the different components?

Architecural Layer diagram

12

Practically speaking, what does an
architecture diagram look like?

13

Architectures are generally described with
box-and-arrow diagrams

Very common and extremely valuable!
What does a box represent?
An arrow?

Another box and arrow diagram

Architecture diagrams include:

Components (boxes)
• Define the basic computations comprising the system and their

behaviors
• Data management, major services, responsible entities, etc.

Connectors (arrows)
• Define the interconnections (communication) between components

• Procedure call, event announcement, asynchronous message sends, etc.

16

Consider the set of structures needed to reason about a
software system

Architecture diagrams using UML

Neat free tool: https://www.drawio.com/
17

UML = universal modeling language
• A standardized way to describe

software architecture and design
• Used in industry
• Not the topic of this lecture

Critical advice about syntax:
• Use consistent notation: one

notation per kind of component or
connector

Leverage common architecture patterns as you
consider how to design one for your system

18

1.Pipe and filter
2.Layered
3.Client-server
4.MVC
5.Micro services

We’ll also discuss some
overall architectural design
principles to consider (these
patterns exhibit them!)

SW Architecture #1 – Pipe and filter

It doesn’t specify the design or implementation details of
the individual components (the filters)

The pipe-and-filter architecture talks about the
main components and the way they connect

Filter computes on
the data

Pipe passes the data

19

Example: create a histogram of the CSE 403 letter grades

???
B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin
…

2 A
1 B
…

SW Architecture #1 – Pipe and filter

20

SW Architecture #1 – Pipe and filter
The architecture specifies the functional components and their connections

Input

B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin
…

2 A
1 B
…

B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin

B,CSE403,Joe
A,CSE403,Jane
A,CSE403,Lin

B
A
A

A
A
B

2 A
1 B

21

Select Order Count

SW Architecture #1 – Pipe and filter

grep CSE403 grades.csv | cut -f1 -d ‘,’ |
sort | uniq -c

B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin
…

2 A
1 B
…

B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin

B,CSE403,Joe
A,CSE403,Jane
A,CSE403,Lin

B
A
A

A
A
B

2 A
1 B

What is a pro and con of pipe
and filter architecture?

22

The architecture abstraction eventually
gets lowered to code

An architectural style imposes constraints
• Pipe & filter

• Filters must compute local transformations
• Filters must not access or share state with other filters
• There must be no cycles in the pipeline

• If these constraints are violated, it’s not a pipe & filter system
• Is this pipe and filter?

scan parse optimize generate

Database Common, but not pipe-and-filter
23

SW Architecture #2 – Layered (n-tier)

Layer 1

Layer 2.1 Layer 2.2

Layer 3.1 Layer 3.2

Layer 4

• Each layer has a certain responsibility

• Layers only communicate with
neighboring layers

• Layers use (depend on) services
provided by the layers directly below
them

• Layers of isolation – limits
dependencies

• Good modularity and separation of
concerns

24

SW Architecture #2 – Layered

Linux Architecture
Enterprise System Architecture

Pros / cons?

25

SW Architecture #3 – Client Server

Client (requests service)

Server (provides service)

Clients can be software that depends
on a shared database/service

What might
be a con of

this and how
might it be
avoided?

26

SW Architecture combinations!
Client-Server may be too high a level of abstraction for your purpose
Consider combining with other patterns (e.g., layered)

Presentation layer

Business logic layer

Data access layer DB

Client YClient X

27

Server

SW Architecture combinations^2

How detailed
should an
architecture
description be?

Presentation layer

Business logic layer

Client Y

Data access layer

Client X

DB cDB a DB b

28

SW Architecture #4 – Model View Controller

View Controller

Model

Client
sees uses

manipulatesupdates

Divides a system into three
components:

• Model
• Data management

• View
• Presents data to user /

provides user interface
• Controller

• Handles control flow /
mediates between the
view and model

29

Database

SW Architecture #4 – Model View Controller

View Controller

Model

Client
presents

manipulates

Divides a system into three
components:

• Model
• Data management

• View
• Presents data to user /

provides user interface
• Controller

• Handles control flow /
mediates between the
view and model

30

Database

requests

requests

updates

responds

SW Architecture – many variants of MVC

Consider the connections expressed
in UML (* == many)

31

SW Architecture #5: Microservices

• Breaks app into small
independent modular
services

• Each is responsible for
specific functionality and
communicates with
others via apis

https://medium.com/@the_nick_morgan/what-are-the-10-most-common-software-architecture-patterns-faa4b26e8808

Pros / cons?

What architecture
pattern would you
choose and why?

• Weather app like the Weather Channel
• Email service like Outlook or Gmail
• Online banking service like Bank of America
• Online multi-faceted store like Amazon
• Continuous integration tool that supports build>test>commit

33

https: //PollEv.com /cse403wi

34

35

36

37

38

39

What to consider as you design your
architecture

40

As an architect, consider …
Level of Abstraction

• Components (modules) and their interconnections (communication/apis)

• Decompose to a level that allow you to reason about the software system

Separation of concerns
• High cohesion – tight relationships within a component (module)
• Loose coupling – interconnections between components (module)

Modularity
• Decomposable designs (divide and conquer), composable components
• Localized changes (due to requirement changes)
• Span of impact (how far can an error spread)

41

High cohesion (strong cohesion)

Cohesion: how closely the operations in a module are related
and belong together

• High cohesion means a component of a system has a clear
purpose and scope, and only does one thing well

• Strong relationships within a module improve clarity and
understanding

• A module with good abstraction usually has strong internal
cohesion

42

Which would you rather work with?

43

Loose coupling

Coupling: the kind and quantity of interconnections among
modules

• Modules that are loosely coupled (or uncoupled) are easier to
work with

• The more tightly coupled two modules are, the harder it is to
work with them separately (consider development, testing, …)

44

Which would you rather work with?

45

As an architect, consider …

• System understanding: interactions between modules

• Reuse: high-level view shows opportunity for reuse

• Construction: breaks development down into work items;
provides a path from requirements to code

• Evolution: high-level view shows evolution path

• Management: helps understand work items and track progress

• Communication: provides vocabulary; a picture says 1000 words
46

• Satisfying functional and performance requirements
• Managing complexity
• Accommodating change

As an architect, don’t lose sight of …

47

Summary

• An architecture provides a high-level framework, a blueprint, to build
and evolve a software system

• Strive for modularity: high cohesion
and loose coupling

• Learn from existing architectural
styles and patterns

48

Architecture
The set of structures needed to reason about a software system

Additional Material

49

Divide and conquer
• Benefits of decomposition:

• Decrease size of tasks
• Support independent testing and analysis
• Separate work assignments
• Ease understanding

• Use of abstraction leads to modularity
• Implementation techniques: information hiding, interfaces

• To achieve modularity, you need:
• Strong cohesion within a component
• Loose coupling between components
• And these properties should be true at each level

50

Qualities of modular software
• Decomposable

• can be broken down into pieces

• Composable
• pieces are useful and can be combined

• Understandable
• one piece can be examined in isolation

• Has continuity
• change in reqs affects few modules

• Protected / safe
• an error affects few other modules 51

Interface and implementation

• public interface: data and behavior of the object that can be seen
and executed externally by "client" code

• private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be
directly accessed

• client: code that uses your class/subsystem

Example: radio
• public interface is the speaker, volume buttons, station dial
• private implementation is the guts of the radio; the transistors, capacitors,

voltage readings, frequencies, etc. that user should not see
52

