Architecture

CSE 403 Software Engineering
Winter 2026

Today's Outline

Architecture
1. What do we mean by architecture
2. How does it differ from design
3. What are some common architecture patterns used in software
4. What to consider as you create your architecture

See readings posted on the calendar for more software architecture
examples

Short video on merge-conflict material is in Panopto (01-21-26 lecture)

What does “Architecture” make you think of?

MIT Stata Center by Frank Gehry Paul G. Allen Center by LMN Architects

In contrast, what comes to mind with "Design”?

Here's another example close to home

Bill & Melinda Gates Center for UW CSE - LMN

5

Let's transition the ideas to software

engineering

<%9001d yuswdojanaq

Requirements
Architecture

Design
Source code

Level of abstractio>

The level of abstraction is key

With both architecture and design, we're building an
abstract representation of reality

* Ignoring (insignificant details)
* Focusing on the most important properties

« Considering modularity (separation of concerns) and
Interconnections

High level definitions

Software Architecture (what components and inter-connections are needed)
« Set of structures needed to reason about a software system
« Functions as the blueprints for the system and its development

« Provides a high-level view of the overall system:
- What are the components
- What are the connections and/or protocols between components

Software Design (how the components are developed)

« Considers one component at a time
- Data representation
- Interfaces, class hierarchy

C0

Case study - abstraction - Linux kernel

Source code

Suppose you want to add a feature
16 million lines of code!
Where would you start?

« What does the code do?

Case study — Linux kernel

Call graph

Suppose you want to add a feature
16 million lines of code!
Where would you start?

« What does the code do?

10

Case study — Linux kernel

Dependency graph

Suppose you want to add a feature
16 million lines of code!
Where would you start?

« What does the code do?
TS * Are there dependencies?

E 8
elementtree-1.2. P070827-pre

11

Case study — Linux kernel

Architecural Layer diagram

User application [J]

"GNU C library (glibc)

-
4

System call interface

Kernel

Device drivers

Hardware

Suppose you want to add a feature
16 million lines of code!
Where would you start?

 What does the code do?

« Are there dependencies?
« What are the different components?

12

Practically speaking, what does an
architecture diagram look like?

Architectures are generally described with

box-and-arrow diagrams

*-.
. (=
N

‘A »
- oy

‘..

-C J-—@MH)~

Parallel application

MPICH

GM | FM

TCP /1P

Myrinet

Fast Ethernet

Reguests >

<]Notiﬁcazions

Another box and arrow diagram

Very common and extremely valuable!
Any Client Driver What does a box represent?
Firefox Plugin An arrow?

Torque Driver

Third—Party Listener - > XPS.T
Software, e.g., |e«—T" Module Engine
Torque Engine, f

Firefox, ~—___
etc. 3 Presenter XPST File
——— Module (cog. model)

4

xPST Web
Authoring
Tool (WAT)

Architecture diagrams include:

Components (boxes)

* Define the basic computations comprising the system and their

behaviors
® Data management, major services, responsible entities, etc.

Connectors (arrows)

* Define the interconnections (communication) between components
® Procedure call, event announcement, asynchronous message sends, etc.

Consider the set of structures needed to reason about a
software system

16

Architecture diagrams using UML

UML = universal modeling language

* A standardized way to describe
software architecture and design

* Used in industry
* Not the topic of this lecture

Person —~ Address

0.1 lives at 1

Student

0.* supervises - Professor

Critical advice about syntax:
®* Use consistent notation: one

notation per kind of component or

connector

Neat free tool: https://www.drawio.com/
17

Leverage common architecture patterns as you
consider how to design one for your system

1.Pipe and filter

We'll also discuss some

2. Laye red overall architectural design

. principles to consider (these
3- Cllent_server patterns exhibit them!)
4. MVC

5.Micro services

18

SW Architecture #1 — Pipe and filter

The pipe-and-filter architecture talks about the
main components and the way they connect

Filters /

" LY Filter B ™ Filter »@.

Pipe passes the data

source

sink

Filter computes on It doesn’t specify the design or implementation details of
the data the individual components (the filters)

19

SW Architecture #1 — Pipe and filter

Example: create a histogram of the CSE 403 letter grades

B,CSE403,Joe 2 A
B,CSE503,Joe 1B

’ ’ ?P7
A,CSE403,Jane E> o E:>
A,CSE403,Lin \/

SW Architecture #1 — Pipe and filter

The architecture specifies the functional components and their connections

B,CSE403, Joe 2A

B,CSE503,Joe Input > Select |+ Order [»{ Count 1B

A,CSE403,Jane E> E>

A,CSE403, Lin —
B,CSE403,Joe B,CSE403, Joe B A 2 A
B,CSE503 Joe ™™ A CSE403Jane ™ p = , =) 5
A,CSE403,Jane A,CSE403, Lin A B

A,CSE403,Lin

21

SW Architecture #1 — Pipe and filter

The architecture abstraction eventually What is a pro and con of pipe
gets lowered to code

and filter architecture?

B,CSE403,Joe 2A

B,CSE503,Joe IZ> grep CSE403 grades.csv | cut-f1-d ‘| IZ> 1B

A,CSE403,Jane sort | uniq -c

A,CSE403,Lin —
B,CSE403,Joe B,CSE403,Joe B A 2A
B,CSE503,Joe ™ A CSE403,Jane == p = , = 5
A,CSE403,Jane A,CSE403,Lin A B

A,CSE403,Lin

22

An architectural style imposes constraints

* Pipe & filter

* Filters must compute local transformations

* Filters must not access or share state with other filters

* There must be no cycles in the pipeline
« If these constraints are violated, it's not a pipe & filter system
* Is this pipe and filter?

scan > parse > optimize > generate

R . .
Common, but not pipe-and-filter

23

SW Architecture #2 — Layered (n-tier)

» Each layer has a certain responsibility

* Layers only communicate with
neighboring layers

Layer 4

Layer 3.1 | Layer 3.2 Layers use (depend on) services

provided by the layers directly below

Layer 2.1 Layer 2.2 them

 Layers of isolation — limits

Layer 1 dependencies

» Good modularity and separation of
concerns

24

SW Architecture #2 — Layered

Linux Architecture

User application \[]]

4 .

"GNU C library (inbc)J

System call interface

Kernel
Device drivers J
Hardware J

Enterprise System Architecture
| A
L

: | (ustomer [€¢----- Customer
Presentation Layer o | Delegate

Business Layer

Persistence Layer Cus(}:(r)ner Odrggr
1 1
L3 1
1 L
I 1|
Database Layer A ()11 R

SW Architecture #3 — Client Server

What might

be a con of

Client (requests service) this and how
Request , might it be
Response aVO|dedr)

Server (provides service)

Clients can be software that depends
on a shared database/service

26

SW Architecture combinations!

Client-Server may be too high a level of abstraction for your purpose
Consider combining with other patterns (e.g., layered)

Presentaion layer

Business logic layer

Data access layer

27

SW Architecture combinations”2

should an

Presentation layer
architecture

description be? Business logic layer
Data access layer

> > >
oo
28

How detailed

SW Architecture #4 — Model View Controller
Divid tem into thr
compeosnae;}c/ss:) o @

sees uses
 Model Ve \,
» Data management
« View View Controller

* Presents data to user /
provides user interface _
« Controller updates manipulates
Model

« Handles control flow /
mediates between the

view and model ,

29

SW Architecture #4 — Model View Controller
Divides a system into three
componen}c/s: @

presents requests
* Model /
« Data management requests
* View View 1 > Controller
« Presents data to user / updates
provides user interface resporV
« Controller manipulates
« Handles control flow / Model
mediates between the
view and model

30

SW Architecture — many variants of MVC

MvC

{ vewttose

Consider the connections expressed

in UML (* == many)

31

SW Architecture #5: Microservices

 Breaks app into small Lnﬁ, | &
Independent modular | S

Mobile app

services
« Each is responsible for
specific functionality and w.,‘ :
communicates with | | easen
others via apis s —

https://medium.com/@the_nick_morgan/what-are-the-10-most-common-software-architecture-patterns-faa4b26e8808

What architecture
pattern would you —
choose and why? a N

https: //PollEv.com/cse403wi

« Weather app like the Weather Channel

* Email service like Outlook or Gmail

* Online banking service like Bank of America
* Online multi-faceted store like Amazon

« Continuous integration tool that supports build>test>commit

33

“u

What software architecture would you choose?

0 surveys completed

0 surveys underway

“u

W Weather app like the Weather Channel

“u

W Email service like Outlook or Gmail

“u

W Online banking service like Bank of America

“u

W Online multi-faceted store like Amazon

“u

W Continuous integration tool (build>test>commit)

What to consider as you design your
architecture

As an architect, consider ...

Level of Abstraction
« Components (modules) and their interconnections (communication/apis)

« Decompose to a level that allow you to reason about the software system

Separation of concerns
 High cohesion — tight relationships within a component (module)
 Loose coupling — interconnections between components (module)
Modularity

« Decomposable designs (divide and conquer), composable components
* Localized changes (due to requirement changes)

« Span of impact (how far can an error spread)

41

High cohesion (strong cohesion)

Cohesion: how closely the operations in a module are related
and belong together

* High cohesion means a component of a system has a clear
purpose and scope, and only does one thing well

* Strong relationships within a module improve clarity and
understanding

* A module with good abstraction usually has strong internal
cohesion

42

= Person

Name

Phone Number

Email Address
Student-Student No
Student-Average Mark
Professor-Staff No
Professor-Salary

IsaStudent
IsaProfessor
Is Eligible to Enroll
Get Seminars Taken
Get Seminars Taught

Which would you rather work with?

&l Person

Name
Phone Number

Email Address

Purchase Parking Pass

|

=l Student

Student Number

Average Mark

Is Eligible To Enroll

Get Seminars Taken

Professor

Salary

43

Loose coupling

Coupling: the kind and quantity of interconnections among
modules

* Modules that are loosely coupled (or uncoupled) are easier to
work with

* The more tightly coupled two modules are, the harder it is to
work with them separately (consider development, testing, ...)

44

Which would you rather work with?

User Interface| __ |Graphics| ™™
-Endé
~End3 i 2 1
| ‘ - -End16
End11 o2 e . f_En;E;dza
-End4 - -
£nas Application Level Classes
Data Storage |
‘ -Eng13
IR End19
End12| _Enai4 -Ends .
T |Business Rules | ™"

+ -End18

End17

Enterprise Level Tools

L

-End22

Data Storage

User Interface | === |Graphics

-Endi1

-End?

Business Rules | &«

-End5
. -End3
-End6
=42 | Application Level Classes
]
" -Endi5 * Endi3
-End16 e
-End10

Enterprise Level Tools

[

-End8

45

As an architect, consider ...

System understanding: interactions between modules
Reuse: high-level view shows opportunity for reuse

Construction: breaks development down into work items;
provides a path from requirements to code

Evolution: high-level view shows evolution path
Management: helps understand work items and track progress

Communication: provides vocabulary; a picture says 1000 words

46

As an architect, don't lose sight of ...

 Satisfying functional and performance requirements
* Managing complexity
* Accommodating change

47

Summary

Architecture
The set of structures needed to reason about a software system

* An architecture provides a high-level framework, a blueprint, to build
and evolve a software system

* Strive for modularity: high cohesion
and loose coupling

* Learn from existing architectural
styles and patterns

Additional Material

Divide and conquer

* Benefits of decomposition:
* Decrease size of tasks
* Support independent testing and analysis
* Separate work assignments
* Ease understanding

* Use of abstraction leads to modularity

* Implementation techniques: information hiding, interfaces
* To achieve modularity, you need:

* Strong cohesion within a component

* Loose coupling between components
* And these properties should be true at each level

50

Qualities of modular software

* Decomposable
* can be broken down into pieces

* Composable
* pieces are useful and can be combined

* Understandable
* one piece can be examined in isolation

* Has continuity
* change in regs affects few modules

Protected / safe
* an error affects few other modules

Interface and implementation

* public interface: data and behavior of the object that can be seen
and executed externally by "client" code

* private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be
directly accessed

* client: code that uses your class/subsystem

Example: radio
* public interface is the speaker, volume buttons, station dial

* private implementation is the guts of the radio; the transistors, capacitors,
voltage readings, frequencies, etc. that user should not see

52

