Version control and git

CSE 403 Software Engineering
Winter 2026

Today's Outline

1. Version control: why, what, how
2. Git: basic concepts for working with a team

See git references and readings on the Calendar

UW CSE 403

Why use version control

mmmmmmmmm

UW CSE 403

Why use version control

- —

Common App Common App
Essay Essay FINAL
11:51pm 11:57pm

UW CSE 403

Why use version control — backup/restore

—
= —
P - .

. o

Common App Common App
Essay Essay FINAL Essay FINAL

Common App Common App
Essay FINAL

11:51pm 11:57pm 11:58pm 11:59pm

UW CSE 403

Why use version control — teamwork

Common App Common App Common App Common App Common App Common App Common App Common App
Essay Essay EDITED Essay FINAL Essay FINAL Essay FINAL Essay OKAY THIS Essay REVISED Essay REVISED
FINAL FINAL REVISED IS THE FINAL FINAL
ONE

Who is going to make sense of this mess?

UW CSE 403

Version control

Version control records changes to a set of files over time
This makes it easy to review or obtain a specific version (later)

Do you Yes
need it? * you do
Yis

Install
Git

UW CSE 403

Goals of a version control system

Version control records changes to a set of files over time

This enables you to:

O

O

O

Keep a history of your work
m See which lines were co-changed
Checkpoint specific versions (known good state)
m Recover specific state
Binary search over revisions
m Find the one that introduced a defect
Undo arbitrary changes
m Without affecting prior or subsequent changes
Maintain multiple releases of your product

AND it enables you
to effectively
COORDINATE with
others working on
the same work
product

Who uses version control?

Everyone should use version control
Do you Yes
e large teams (100+ developers) ity ol No
e Small teams (2-10+ developers)
e Yourself (and your future self)

Install
Example application domains ‘ et

Software development

Hardware development

Research & experiments (infrastructure and data)

Applications (e.g., (cloud-based) services)

Services that manage artifacts (e.g., legal, accounting, business, ...)

Version control repositories

Working by yourself

" Repository)
(database of
_ edits/versions) _

7

Workmg copy
(make edits here) |

UW CSE 403

Centralized version control

e One central repository
It stores a history of project
versions

Centralized version control

Server

e Each user has a working copy Repository | | Remote (shared)

e A user commits file changes

. 0
to the repository \,})\:%
, o’/?\\
e Committed changes are "
: : .. Local Working
immediately visible to (individual) k copy
teammates who update
Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

e Examples: SVN (Subversion), CVS

UW CSE 403

Distributed version control

e Multiple copies of a repository Distributed version control
Each stores its own history of project |

e —
versions LRepository J Remote (shared)

]

° ‘_/:;',-— . 0
e Each user commits to a local 9\3‘3‘5};\;:/»- =| = \gi:g//
. . N 3| |= A~
rivate) repositor &= ° = Sy
(p) P y f / “\ o N .)
e All committed changes remain local .Rep"s“‘”",’ Repository | L_Rep“'t”")
. B ‘s, B \?/. ~
unless pushed to another repository 5?7 3/ &éf </
e No external changes are visible LWorking] lfworking‘]
unless pulled from another e =
repository

e Examples: Git, Hg (Mercurial)

UW CSE 403

Two different version control modes

Centralized version control

Server
Repository
c (Io
N
)
o) Ib’i‘
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control in git

Server
Repository
o =l |z Sy,
° o0 g g'- D(Js
eV a2l |=
Repository Repository Repository
& 3 & 3 &3
99 99 7
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Version control with Git

¢ git

Linux

Linus Torvalds - Wikipedia

An example git workflow

git clone (copies remote repo local)

) Distributed version control
git checkout (select branch) e

N
Repository | | Remote (shared)

develop : o=
° L] . /-/_,,
git commit (local commit) N\

| Repository

./'/
) lRepository
it pull (merge changes in remote with local) &%
gnp 9 9 §7$‘,’/

~

)

resolve any conflicts you introduced I ¥

LWorkmg] l”Worklng
copy . copy

git push OR git pull request (merge local
changes with remote)

UW CSE 403

PollEv.com/cse403wi

Let's do a little true/false
quiz to see what you
know already about git

“u

git: true or false

0 surveys completed
I

0 surveys underway

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

“u

W "git clone" is a git command

“u

W "git cherry-pick" is a git command

“u

W "git fetch" is a git command

“u

W "git fork" is a git command

“u

W "git branch" is a git command

“u

W "git pull” is a git command

“u

W A merge conflict in git arises as soon as two users change the same file

“u

W After editing a file, only some of the edits may end up in a "git commit"”

Git quiz commands (short definitions)

« git clone — copy remote repo to local for development
« git fork (github command) — make a new remote repo
» git cherry-pick — apply identified commits to the branch

« git fetch — create a local branch with latest from the remote repo for

comparison

« git pull — merge latest from the remote repo into your local branch
(= git fetch + git merge)

UW CSE 403

Using git with a team for a product delivery
What if you have to support: o

e Version 1.0.4 and version 2.0.0

e Windows and macOS gl

e Adding a feature
« Fixing a bug

Git has 3 ways to represent multiple histories:

e Branch: Start a parallel history of changes to the code in the repository

e Clone: Make a copy of the repository locally to work on code changes

e Fork: Make a copy the repository that will not necessarily be merged
back with original (but can be through a pull request)

UW CSE 403

Branches

- Git has a basic concept of a branch
- There is one main development branch (main, master, trunk)
- You should always be able to ship “working software” from main

main
branch O O () () (T) e

commit point HEAD
Represents a sequence of commits Most recent
and is one state of the project commit point

onh main

UW CSE 403

Branches

- To develop a feature, add a new branch
- And then later merge it with main
- Lightweight, as (conceptually) branching simply copies a pointer
to the commit history
- Why is this a good practice?

merge point

feature - Branch software merged with main

branch
main
branch O

UW CSE 403

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps main always working and allows for parallel development

feature
branch

main

branch

Hot fix

UW CSE 403

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps main always working and allows for parallel development

feature
—
branch
main
branch

Hot fix

UW CSE 403

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps main always working and allows for lots of parallel

development
feature
—
branch2
branchl
main
—
branch

Hot fix

UW CSE 403

Branches

- To develop a feature or bug fix, add a new branch
- Why? Keeps main always working and allows for lots of parallel

development
feature
— 3
branch2 | e —
branchl
main
—
branch

Hot fix

UW CSE 403

Cloning

When you clone a repo you are creating a local copy on your computer that
you can sync with the remote

|deal for contributing directly to a repo alongside other developers

« Can use all git GitHub

commands to
commit back to
remote repo

Clone
(full-related copy — often on a local host)

UW CSE 403

Forki NQg (github concept)

- Creates a complete independent copy of the repository (project)
- Allows you to evolve the repo without impacting the original
- If original repo goes away, forked repo will still exist

GitHub Fork
(full independent copy)

N0 G U= A U

- It's possible to update the original but only with pull requests
(original owner approves or not)

UW CSE 403

Which would you choose?

Branch (parallel dev), fork (in github), or clone (to local machine)?

Scenario: CSE403 Class Materials GitHub Repo

1. Fix the bugs in the in-class assignment-1

2. Create instance for working on my laptop

3. Create instance for CSE413 to leverage structure of CSE403
4. Create area for Wi26 specific material

UW CSE 403

Merqi 't
ergin
bran%:hgs ® gl

Merging branches

Branches can get out of sync

- merge incorporates changes from one branch into another

- Life goal of a branch is to be merged into main as quickly as possible

- push incorporates changes into main* (shared repo)

- pull request incorporates changes into main* (shared repo) after they are reviewed
- Using pull requests is a CSE403 requirement!

Merge point
feature - Branch software merged with main
branch /
main
—
branch O

*or another specified branch in the shared repo

3 ways to resolve a pull request
()

main
branch

feature
branch

main
branch

feature
branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merge
feature L\
branch (4
main
branch
feature L)
branch (4

main
branch

feature
branch

()
UW CSE 40&/

3 ways to resolve a pull request

main () ()U)
/
merge
() B
A

branch

feature
branch

main)

branch /
feature Ve rebase
branch O/

main

branch

feature
branch

()
UW CSE 4(\1_/

3 ways to resolve a pull request

main)
branch /
merge
()
A
()
/
O\ : g rebase
_/

squash

O & merge

feature
branch

main
branch

feature
branch

main
branch

feature
branch

3 ways to resolve a pull request

O O
' merge

JOOC

main
branch

feature
branch

main
branch

()
/
()
A
()
/
()
o/

feature pase
branch
same
- project
branch ‘ ‘ ‘ ‘ ‘ ‘ slate
squash

feature ()
branch ‘ \/ O & merge

3 ways to resolve a pull request

main)
branch /
merge
feature L\ &
branch (4
same code diff
main

branch

feature
branch

same
project

main state
branch
squash
feature O &
merge
branch g

main
branch

3 ways to resolve a pull request
feature

)
/
merge
() 8
branch A4
What are the pros A M
and cons of each? Y
feature Ve rebase
branch N4

main
branch

squash

O & merge

feature
branch

Github has standard
options for these
useful operations for
pull requests

Merge pull request

v’ Create a merge commit
All commits from this branch will be added to
the base branch via a merge commit.

Squash and merge
The 1 commit from this branch will be add

to the base branch.

Rebase and merge

The 1 commit from this branch will be

and added to the base branch.

UW CSE 403

M @
coerwzc?if:ts ® glt

Merge conflicts

* You and a teammate are editting the same file on your own local branches

* You both execute merges to integrate your changes into main

* Git tries to merge the edits for you, retaining edits from both branches

* A conflict arises when two users change the same line of a file

* The person doing the last merge needs to resolve the conflict by manual editing

Hello, cats!

Kitty’s

—
branch
main
—
branch
Hello, world!
Fido’s
—
branch Hello, dogs!

Merge algorithm: may fail to make a merge

1 def main():
. . 2 = 128
e Line-by-line merge . e
yields a conflict Z nitialcode N
® Inspection reveals 1 def main(): 1 def main():
2 n_people = 128 2 n = 64
they can be merged 3 print(n_people) ; print(n)
Change 1 N\ / Change 2

Works despite
changes on Git outputs:

same line “merge conflict”

Merge algorithm: falsely successful merge

e Line-by-line merge yields no
conflicts (“clean merge”)

e Resulting code is incorrect

e Why?

Function name changed

i def mult(a,b):
return axb

5 def main():
a=3
print(a)

" Initial code N

Function name not changed

def multiply(a,b): 1 def mult(a,b):
return a*b return a*b
def main(): def main():
a=3 4 a = mult(3,5)
print(a) 5 print(a)
Change 1 ~ / Change 2
—p 1 def multiply(a,b):
2 return axb
5 def main():
—) 4 a = mult(3,5)
5 print(a)

Merged (incorrectly)

How to avoid merge conflicts

Synchronize with teammates often {2¢
* Pull often
* Avoid getting behind the main branch

* Push (via a pull request) as often as practical
* Don't destabilize the main build (don't break the build!)

* Use continuous integration (automatic testing on each push,
even for branches)

* Avoid long-lived branches

UW CSE 403

Commit often

Every commit should address one concept (be atomic)
Every concept should be in one commit

Tests should always pass before commit

Consider squash and merge when appropriate, e.g.,
bugfix branch that had easily combinable commits

UW CSE 403

Make single-concern branches

* Create a branch for each simultaneous task
 Easier to share work with teammates
» Single-concern branch = atomic commit on main
« Requires a bit of bookkeeping to keep track of them all; don’t overdo it

UW CSE 403

Do not commit all files -~

Use a .gitignore file

Don’t commit:

e Binary files

e Log files

e Generated files

e Temporary files

Committing would waste space and lead to merge conflicts

UW CSE 403

Lived best practice when ready to merge

1. Integrate changes from main to your branch to make sure no
intermediate changes in main have broken your code

2. Merge your branch to main (via a pull request)

3. Not perfect but decreases risk of breaking the build

feature feature

branch branch
~ / then N
main main 7\ £\

branch branch

UW CSE 403

Plan ahead to avoid merge conflicts

* Modularize your work
* Divide work so that individuals or subteams “own” parts of the code
* Other team members only need to understand its specification
* Requires good documentation and testing

* Communicate about changes that may conflict

- Examples (rare!): reformat whole codebase, move directories, rename
fundamental data structures

- If main is getting unstable, add some order

- Temporarily sequence merges — main should always be ready to ship!

UW CSE 403

Some resources

Git concepts and commands (cheatsheets):
* https://training.github.com/downloads/github-git-cheat-

sheet/
* https://wac-cdn.atlassian.com/dam/jcr:e7e22f25-bba2-

4efl-a197-53f46b6df4a5/SWTM-2088 Atlassian-Git-
Cheatsheet.pdf?cdnVersion=1272

Github concepts and flows:
* https://githubtraining.github.io/training-manual
* https://www.atlassian.com/git/tutorials/

Also see the Calendar

UW CSE 403

Install

GitHub Desktop

desktop.github.com

Git for All Platforms

git-scm.com

Configure tooling

Configure user information for all local repositories
$ git config --global user.name "[name]"

Sets the name you want attached to your commit
transactions

$ git config --global user.email "[email address]"

Sets the email you want attached to your commit
transactions

$ git config --global color.ui auto

Enables helpful colorization of command line output

Branches

Branches are an important part of working with Git. Any
commits you make will be made on the branch you're
currently “checked out” to. Use git status to see which
branch that is.

Create repositories

A new repository can either be cre
existing repository can be cloned.
initialized locally, you have to pust
afterwards.

$ git init

The git init command turns an exis
new Git repository inside the folde
command. After using the git in:
local repository to an empty GitHL
following command:

$ git remote add origin [url]

Specifies the remote repository fo
The url points to a repository on G

$ git clone [url]

Clone (download) a repository tha
GitHub, including all of the files, b

The .gitignore file

Sometimes it may be a good idea
being tracked with Git. This is typic
file named .gitignore . You can fi
for .gitignore files at github.corr

Synchronize changes

Cuimrhvaniza vaniv lacal vamacidame s

Additional material

More Git vocab %¥

- index: staging area (located .git/index)
content: git tracks a collection of file content, not the file itself
tree: git's representation of a file system
working tree: tree representing the local working copy
staged: ready to be committed
commit: a snapshot of the working tree (a database entry)
- ref. pointer to a commit object
- branch: just a (special) ref; semantically: represents a line of dev
- HEAD: a ref pointing to the working tree

UW CSE 403

Rebase is a powerful tool, but be careful

* Results in a sequential linear commit history

« Changes the commit history

 Others may be working on copy of original tree - painful
for them to sync/merge!

Do not rebase public branches in general
(especially not with a force-push!)

UW CSE 403

More on rebase

Merge vs Rebase

Feature

Main

UW CSE 403

v

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

o0—0—<—0-0—"

™

Merge Commit
https://www.atlassian.co

UW CSE 403

Merge (integrating changes into main)

UW CSE 403

Merge (best practices do both)

1. Integrate changes from Main to your branch to make sure no
intermediate changes in Main have broken your code

2. Merge your branch to Main

3. Not perfect but decreases risk of breaking the build

J
{OOO@ OO0~
o—o0—<—-o0-o0—" then O—O O—O0—®
i

C
21> 0

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge vs Rebase

Feature

Main

UW CSE 403

N2

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase

* Rebase moves the
entire feature
branch to begin N
at the tip of the
main branch

Feature

* |t re-writes A~
history by
creating new
commits, now In
the main branch

Brand New Commit

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge vs Rebase — why rebase?

What's a benefit of
rebase?

» Clean linear history
» Easier debugging

What's a risk?

* Losing some
commit history

* Others may be
working on copy of
original tree -
painful for them to
sync/merge!

Feature

N2

O—O—O—O—I—G)_@_@

Brand New Commit

UW CSE 403

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (use to rewrite

commits)

Can rewrite
commits as they
move to the main
branch

Change commit
message

UW CSE 403

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (use to squash)

« Squash combines commits

Squash commits

into a single commit

) %
0 0

UW CSE 403

https://www.atlassian.com/git/tutorials/merging-vs-reba

sing

Interactive Rebase (squash and merge)

 Can combine commits
before a merge, too!

Squash commits * Not uncommon to do
into a single commit

\ Feature
: 4\4

T

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

#® Mergg Commitos

Rebase: a powerful tool, but ...

=
¥ J
O—0O0O—m®—®
“+
Your main
branch
Main Everyone else’s
main branch

UW CSE 403

