
Version control and git
CSE 403 Software Engineering
Winter 2026

Today’s Outline

1. Version control: why, what, how
2. Git: basic concepts for working with a team

See git references and readings on the Calendar

UW CSE 403

Why use version control

UW CSE 403

11:51pm

Why use version control

UW CSE 403

11:51pm 11:57pm

Why use version control – backup/restore

UW CSE 403

11:51pm 11:57pm 11:58pm 11:59pm

Why use version control – teamwork

UW CSE 403

Who is going to make sense of this mess?

Version control

Version control records changes to a set of files over time
This makes it easy to review or obtain a specific version (later)

UW CSE 403

Goals of a version control system
Version control records changes to a set of files over time

This enables you to:

○ Keep a history of your work
■ See which lines were co-changed

○ Checkpoint specific versions (known good state)
■ Recover specific state

○ Binary search over revisions
■ Find the one that introduced a defect

○ Undo arbitrary changes
■ Without affecting prior or subsequent changes

○ Maintain multiple releases of your product

AND it enables you
to effectively
COORDINATE with
others working on
the same work
product

Who uses version control?
Everyone should use version control
● Large teams (100+ developers)
● Small teams (2-10+ developers)
● Yourself (and your future self)

Example application domains
● Software development
● Hardware development
● Research & experiments (infrastructure and data)
● Applications (e.g., (cloud-based) services)
● Services that manage artifacts (e.g., legal, accounting, business, …)

Version control repositories

Working by yourself

UW CSE 403

Centralized version control

● One central repository
It stores a history of project
versions

● Each user has a working copy

● A user commits file changes
to the repository

● Committed changes are
immediately visible to
teammates who update

● Examples: SVN (Subversion), CVS

UW CSE 403

Remote (shared)

Local
(individual)

Distributed version control

● Multiple copies of a repository
Each stores its own history of project
versions

● Each user commits to a local
(private) repository

● All committed changes remain local
unless pushed to another repository

● No external changes are visible
unless pulled from another
repository

● Examples: Git, Hg (Mercurial)

UW CSE 403

Remote (shared)

Local
(individual)

Two different version control modes

Version control with Git

UW CSE 403

Linus Torvalds - Wikipedia

Linux

An example git workflow

Remote (shared)

Local
(individual)

UW CSE 403

1. git clone (copies remote repo local)
2. git checkout (select branch)

3. develop
4. git commit (local commit)

5. git pull (merge changes in remote with local)
6. resolve any conflicts you introduced

7. git push OR git pull request (merge local
changes with remote)

Let’s do a little true/false
quiz to see what you
know already about git

UW CSE 403

PollEv.com /cse403wi

UW CSE 403

UW CSE 403

UW CSE 403

UW CSE 403

UW CSE 403

UW CSE 403

UW CSE 403

UW CSE 403

UW CSE 403

Git quiz commands (short definitions)

• git clone – copy remote repo to local for development

• git fork (github command) – make a new remote repo

• git cherry-pick – apply identified commits to the branch

• git fetch – create a local branch with latest from the remote repo for
comparison

• git pull – merge latest from the remote repo into your local branch
(= git fetch + git merge)

UW CSE 403

Using git with a team for a product delivery

What if you have to support:
• Version 1.0.4 and version 2.0.0
• Windows and macOS
• Adding a feature
• Fixing a bug

Git has 3 ways to represent multiple histories:
● Branch: Start a parallel history of changes to the code in the repository
● Clone: Make a copy of the repository locally to work on code changes
● Fork: Make a copy the repository that will not necessarily be merged

back with original (but can be through a pull request)

UW CSE 403

Branches

• Git has a basic concept of a branch
• There is one main development branch (main, master, trunk)
• You should always be able to ship “working software” from main

main
branch

commit point
Represents a sequence of commits

and is one state of the project

HEAD
Most recent

commit point
on main

UW CSE 403

Branches

• To develop a feature, add a new branch
• And then later merge it with main
• Lightweight, as (conceptually) branching simply copies a pointer

to the commit history
• Why is this a good practice?

main
branch

feature
branch

merge point
Branch software merged with main

UW CSE 403

Branches

main
branch

feature
branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for parallel development

Hot fix

UW CSE 403

Branches

main
branch

feature
branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for parallel development

Hot fix

UW CSE 403

Branches

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for lots of parallel

development

main
branch

feature
branch1

feature
branch2

Hot fix

UW CSE 403

Branches

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for lots of parallel

development

main
branch

feature
branch1

feature
branch2

Hot fix

UW CSE 403

Cloning

Clone
(full-related copy – often on a local host)

• When you clone a repo you are creating a local copy on your computer that
you can sync with the remote

• Ideal for contributing directly to a repo alongside other developers

GitHub• Can use all git
commands to
commit back to
remote repo

UW CSE 403

Forking (github concept)

• Creates a complete independent copy of the repository (project)
• Allows you to evolve the repo without impacting the original
• If original repo goes away, forked repo will still exist

Fork
(full independent copy)

• It’s possible to update the original but only with pull requests
(original owner approves or not)

GitHub

UW CSE 403

Which would you choose?

Branch (parallel dev), fork (in github), or clone (to local machine)?

Scenario: CSE403 Class Materials GitHub Repo

1. Fix the bugs in the in-class assignment-1
2. Create instance for working on my laptop
3. Create instance for CSE413 to leverage structure of CSE403
4. Create area for Wi26 specific material

UW CSE 403

Merging
branches

UW CSE 403

Merging branches
• Branches can get out of sync

• merge incorporates changes from one branch into another
• Life goal of a branch is to be merged into main as quickly as possible
• push incorporates changes into main* (shared repo)
• pull request incorporates changes into main* (shared repo) after they are reviewed

• Using pull requests is a CSE403 requirement!

main
branch

feature
branch

Merge point
Branch software merged with main

*or another specified branch in the shared repo

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

UW CSE 403

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

3 ways to resolve a pull request

UW CSE 403

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

3 ways to resolve a pull request

UW CSE 403

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

same code diff

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

3 ways to resolve a pull request

What are the pros
and cons of each?

Github has standard
options for these
useful operations for
pull requests

UW CSE 403

Merge
conflicts

UW CSE 403

Merge conflicts
• You and a teammate are editting the same file on your own local branches
• You both execute merges to integrate your changes into main
• Git tries to merge the edits for you, retaining edits from both branches
• A conflict arises when two users change the same line of a file
• The person doing the last merge needs to resolve the conflict by manual editing

main
branch

Kitty’s
branch

Fido’s
branch

Hello, world!

Hello, cats!

Hello, dogs!

???

Merge algorithm: may fail to make a merge

● Line-by-line merge
yields a conflict

● Inspection reveals
they can be merged

Initial code

Change 1 Change 2

Merged (unachievable by
line-based merge)

Works despite
changes on
same line

Git outputs:
“merge conflict”

Merge algorithm: falsely successful merge

● Line-by-line merge yields no
conflicts (“clean merge”)

● Resulting code is incorrect
● Why?

Initial code

Change 1 Change 2

Merged (incorrectly)

Function name changed

Function name not changed

How to avoid merge conflicts

Synchronize with teammates often

• Pull often
• Avoid getting behind the main branch

• Push (via a pull request) as often as practical
• Don’t destabilize the main build (don’t break the build!)
• Use continuous integration (automatic testing on each push,

even for branches)
• Avoid long-lived branches

UW CSE 403

Commit often
• Every commit should address one concept (be atomic)
• Every concept should be in one commit
• Tests should always pass before commit
• Consider squash and merge when appropriate, e.g.,

bugfix branch that had easily combinable commits

UW CSE 403

Make single-concern branches

• Create a branch for each simultaneous task
• Easier to share work with teammates
• Single-concern branch ⇒ atomic commit on main
• Requires a bit of bookkeeping to keep track of them all; don’t overdo it

UW CSE 403

Do not commit all files

Use a .gitignore file

Don’t commit:
● Binary files
● Log files
● Generated files
● Temporary files
Committing would waste space and lead to merge conflicts

UW CSE 403

Lived best practice when ready to merge

then
main
branch

feature
branch

main
branch

feature
branch

1. Integrate changes from main to your branch to make sure no
intermediate changes in main have broken your code

2. Merge your branch to main (via a pull request)
3. Not perfect but decreases risk of breaking the build

UW CSE 403

Plan ahead to avoid merge conflicts

• Modularize your work
• Divide work so that individuals or subteams “own” parts of the code
• Other team members only need to understand its specification
• Requires good documentation and testing

• Communicate about changes that may conflict
• Examples (rare!): reformat whole codebase, move directories, rename

fundamental data structures

• If main is getting unstable, add some order
• Temporarily sequence merges – main should always be ready to ship!

UW CSE 403

Some resources

Git concepts and commands (cheatsheets):
• https://training.github.com/downloads/github-git-cheat-

sheet/
• https://wac-cdn.atlassian.com/dam/jcr:e7e22f25-bba2-

4ef1-a197-53f46b6df4a5/SWTM-2088_Atlassian-Git-
Cheatsheet.pdf?cdnVersion=1272

Github concepts and flows:
• https://githubtraining.github.io/training-manual
• https://www.atlassian.com/git/tutorials/

Also see the Calendar

UW CSE 403

Additional material

More Git vocab

• index: staging area (located .git/index)
• content: git tracks a collection of file content, not the file itself
• tree: git's representation of a file system
• working tree: tree representing the local working copy
• staged: ready to be committed
• commit: a snapshot of the working tree (a database entry)
• ref: pointer to a commit object
• branch: just a (special) ref; semantically: represents a line of dev
• HEAD: a ref pointing to the working tree

UW CSE 403

Rebase is a powerful tool, but be careful

• Results in a sequential linear commit history
• Changes the commit history
• Others may be working on copy of original tree - painful

for them to sync/merge!

Do not rebase public branches in general
(especially not with a force-push!)

UW CSE 403

More on rebase

Merge vs Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge (integrating changes from main)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge (integrating changes into main)

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge (best practices do both)

1. Integrate changes from Main to your branch to make sure no
intermediate changes in Main have broken your code

2. Merge your branch to Main
3. Not perfect but decreases risk of breaking the build

then

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge vs Rebase

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge vs Rebase

• Rebase moves the
entire feature
branch to begin
at the tip of the
main branch

• It re-writes
history by
creating new
commits, now in
the main branch

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Merge vs Rebase – why rebase?

What’s a benefit of
rebase?
• Clean linear history
• Easier debugging

What’s a risk?
• Losing some

commit history
• Others may be

working on copy of
original tree -
painful for them to
sync/merge! https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Interactive Rebase (use to rewrite
commits)

• Can rewrite
commits as they
move to the main
branch

Change commit
message

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Interactive Rebase (use to squash)

Squash commits
into a single commit

• Squash combines commits

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Interactive Rebase (squash and merge)

• Can combine commits
before a merge, too!

• Not uncommon to doSquash commits
into a single commit

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

UW CSE 403

Rebase: a powerful tool, but …

Everyone else’s
main branch

Your main
branch

UW CSE 403

