
Software Requirements
CSE 403 Software Engineering
Winter 2026

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

UW CSE 403 2

Recapping where requirements fit in

UW CSE 403 3

Common stages
• Requirements
• Design
• Implementation
• Testing
• Release
• Maintenance

Virtually all SDLC models have
the following stages

Requirements are at the top of
the list as we start the journey
of product development

Sharing a visual of their importance

UW CSE 403 4

How the customer
explained it

How the project
leader understood

How the analyst
described it

How the developer
wrote it

How the business
consultant described it

How the product
was documented

How operations
installed it

How the customer
was billed

How it was
supported

What customer
really needed

What exactly are software requirements?

UW CSE 403 5

Requirements specify what to build

• describe what, not how
• describe customer needs, not how they’ll be implemented
• reflect product design (product goals), not software design

Product requirements describe the product’s functionality in terms
understandable by customers and devs, with as close to zero ambiguity as
possible

-Isaac Reynolds, Google GPM

Let’s work through an example

UW CSE 403 6

Are these good requirements for an audio
player?

• Available on web and mobile
• Provide volume control
• Provide ability to flag favorites using a pulldown menu
• Enable variable playback speed
• Propose songs using ChatGPT recommendations
• Propose songs based on customer selected genres
• Written in javascript for extensibility and reliability

How about our swing example

UW CSE 403 7

What are good and sufficient requirements for the swing?

• Attaches to a single branch of a tree
• Seats one person 3-5ft tall
• Swings when pushed
• Appeals to environmental advocates
•
•

Timeout: how do requirements differ
from specifications?

UW CSE 403 8

Think of as
customer requirements and

technical specifications

UW CSE 403 9

Requirements specify what to build from a customer
perspective

Specifications specify what to build from a developer
perspective

Requirements are hard but important

UW CSE 403 10

They help us:
• Understand precisely what is required of the software

• Ensure the product delights the customer
• Communicate this understanding precisely to all involved parties

• Common language for stakeholders
• Monitor and control production to confirm that system meets its

specification
• Know when the goal is reached and that it stays operable

In practice, they’re used by many during SDLC

UW CSE 403 11

• Customers: what should be delivered (contractual base)
• Project managers: scheduling and monitoring (progress indicator)
• Designers: basis for a spec to design the system
• Developers: a range of acceptable implementations
• QA / Testers (DevTest): a basis for testing,

verification, and validation

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

UW CSE 403 12

UW CSE 403 13

Let’s start with
some data

From a Standish report
on software project
success

Customer involvement
is 3rd highest factor of
project success!

https://www.standishgroup.com/sample_research_files/CHAOSReport201
5-Final.pdf

The customer
is always right

Focus on the
user and all

else will follow

Customer
obsession
rather than
competitor

focus

Understand
and serve the

customer
better than
anyone else

Successful businesses always start with the
customer’s goal

UW CSE 403 14

Ideas?

• Be a user yourself (but be careful not to bias)
• Talk with users informally (hallway chats, mixers)
• Talk with users formally (interviews, surveys, diary

studies, field studies)
• Build low-fidelity prototypes (mocks, UX prototypes,

eng prototypes)
• Launch and get feedback early (“launch and iterate”)

So, how do we engage with customers

UW CSE 403 15

Keep your customer (user) at the center of the discussion
Listen, observe and ask clarifying questions

UW CSE 403 16

Do:
• Talk to the customers -- to learn how they work
• Ask questions throughout the process -- "dig" for requirements
• Think about why users do something in your service, not just what
• Allow (and expect) requirements to change later

Do’s and don’ts in requirements gathering

UW CSE 403 17

Do:
• Talk to the customers -- to learn how they work
• Ask questions throughout the process -- "dig" for requirements
• Think about why users do something in your service, not just what
• Allow (and expect) requirements to change later

Don't:
• Be too specific or detailed
• Describe complex business logic or rules of the system
• Describe the exact user interface used to implement a feature
• Try to think of everything ahead of time* (caveats apply)
• Add unnecessary features not wanted by the customers

Do’s and don’ts in requirements gathering

The whole process is more formally
known as requirements engineering
The science of eliciting, analyzing, documenting, and maintaining
requirements

As you collect your class project requirements (02 Requirements), consider
three categories:
• Functional requirements

• e.g., input-output behavior, customer visible features

• Non-functional requirements
• e.g., security, privacy, scalability

• Additional constraints
• e.g., programming language, frameworks, testing infrastructure

UW CSE 403 18

It’s essential to prioritize

UW CSE 403 19

If everything is a “Priority 0” (P0), then
nothing is!

● P0 means we’d be embarrassed not
to have this

● P1 is what makes the feature better
than the competition

● P2 is nice to have

It’s essential to prioritize

UW CSE 403 20

If everything is a “Priority 0” (P0), then
nothing is!

● P0 means we’d be embarrassed not
to have this

● P1 is what makes the feature better
than the competition

● P2 is nice to have

Consider the example of a
simple “camera” app.

• Takes photos.
• Takes videos.
• Crashes <0.01% of sessions.
• Opens in <1000ms 90% of the time.
• Takes slow motion videos.
• Takes time lapse videos.
• Does 4K30 resolution.
• Supports manual photography controls.
• Supports RAW capture mode.

It’s essential to prioritize

UW CSE 403 21

If everything is a “Priority 0” (P0), then
nothing is!

● P0 means we’d be embarrassed not
to have this

● P1 is what makes the feature better
than the competition

● P2 is nice to have

Consider the example of a
simple “camera” app.

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

• Use cases
• Personas and user scenarios
• Storyboarding
• Paper prototyping
• Prototyping
• Feature list

UW CSE 403 22

UW CSE 403 23

Cockburn’s requirement template
1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
5. Other

a. Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies

b.Business rules (constraints)
c. Performance demands
d.Security, documentation
e. Usability
f. Portability
g.Unresolved (deferred)

6. Human factors (legal, political, organizational, training)

https://alistaircockburn.com/

Be it the Cockburn
requirements template or
another – central to all – in
one form or another – are
Use Cases

Start with a requirements template

What is a use case

UW CSE 403 24

A use case is a written description of a user's interaction
with the software system to accomplish a goal

Terminology
• Actor: user interacting with the system (may be another system)
• System: the software product
• Goal: desired outcome of the primary actor
• Flow: sequence of actions to achieve the goal

Use a use case to capture a requirement

UW CSE 403 25

As a [user], I want to
[action] so that

[result]

1. As a parent, I want to take sharp photos of my kids in
medium-low light so I can have memories of early
holiday mornings.

2. As a creative, I want to adjust the look-and-feel of my
photos so that they match how I remember the moment.

3. As a YouTube Shorts creator, I want to caption my videos
so that people without sound don’t skip my videos.

4. As a restaurateur, I want to take fresh, juicy-looking
photos of food so that customers want to eat at my
restaurant.

Camera app

Use cases capture
functional

requirements

Use a more formal
use case to describe
the requirement (the

goal) as a journey

A sequence of
actions taken by the

“system” and the
“actor”

Actor: As a parent (“actor”),

Goal: I want to take pictures of my young kids where
they’re all smiling.

Steps:
1. User arranges the family for a photo
2. User presses the shutter 3 times in 5 seconds
3. System saves 3 full-quality images
4. User taps “gallery”
5. System opens the gallery and shows a button to

“select a better moment”
6. User taps the button
7. System creates and shows the “Best Take”
8. User taps “Save as copy”
9. System shows user the saved copy in the gallery

Requirements Milestone requires
you to provide formal use cases

Library app example

UW CSE 403 27

Reserve a book in the library appGoal

Library patronActor

Main
(success)
flow

1. User selects the search screen
2. System presents a search box (with filters)
3. User types in the book title
4. System presents the books that match and

branch locations
5. User selects location and reserves
6. System confirms and re-presents home

page

Library app example

UW CSE 403 28

Reserve a book in the library appGoal

Library patronActor

Main
(success)
flow

1. User selects the search screen
2. System presents a search box (with filters)
3. User types in the book title
4. System presents the books that match and

branch locations
5. User selects location and reserves
6. System confirms and re-presents home

page

Flow
describes
interactions
between
actor and
system

UW CSE 403 29

Use cases capture the functional requirements of a system

• A use case is an example behavior of the system
• Written from an actor's point of view
• 5-10 clearly written steps (flow) lead to a “main success scenario”
• Also used to describe “variation” and “exception” scenarios

Can this requirement be described with a use case?
• The library system must have 99.9% uptime
• Checkouts may not be for longer than 30 days

What is a use case

UW CSE 403 30

Use cases capture the functional requirements of a system

• A use case is an example behavior of the system
• Written from an actor's point of view
• 5-10 clearly written steps (flow) lead to a “main success scenario”
• Also used to describe “variation” and “exception” scenarios

What is a use case

Try it with a use case for your product

UW CSE 403 31

Goal

Actor

1.
2.
3.
4.
…

Main
(success)
flow

Capture your thoughts and we’ll discuss!

Use cases are hugely valuable

UW CSE 403 32

• Capture a level of functionality (list of goals)

• Establish an understanding between the customer and the
developers of the requirements (success scenarios)

• Alert developers of variations (extensions) and exceptions
(errors) cases to test

Let’s double click on these other flows

UW CSE 403 33

Variations and exceptions can be thought of as branches in a use case useful
for identifying other situations that need to be handled

Variation (alternate) flows:

• These paths describe extensions
on the main theme

• Another way to meet the goal

• Library search - Patron enters an
author or subject or category

Let’s double click on these other flows

UW CSE 403 34

Exception (error) flows:

• These paths describe failure
conditions

• What happens when the goal
is not achieved

• Library search - no book is
found, system times out

We can capture this in our template
Reserve a book in the library appGoal

Library patronActor

1. User selects the search screen
2. System presents a search box (with filters)
3. User types in the book title
4. System presents the books that match and branch locations
5. User selects location and reserves
6. System confirms and represents home page

Main
(success)
flow

Variation
(alternate)
flow

(In step 3)
3.1 User types in an author …
3.2 User types in a subject …

UW CSE 403

(In step 5)
5.1.a System notifies that account funds are insufficient
5.1.b System displays current balance [and returns to step 1]

Here’s another example – ATM machine
Withdraw moneyGoal

Bank patronActor

ATMSystem

Main
(success)
flow

Exception
flow

1. System displays account types
2. User chooses type
3. System asks for amount to withdraw
4. User enters amount
5. System debits user’s account and dispenses money
6. User removes money
7. System prints and dispenses receipt

Authenticated inPrecondition

Select withdrawTrigger

These other flows are hugely valuable

UW CSE 403 37

Do
• Think about how every step of the use case could be enhanced or fail
• Give a plausible response to each extension from the system
• Response should either jump to another step of the case, or end it

Don’t
• List things outside the scope of the use case ("User's power goes out")
• Make unreasonable assumptions ("DB will never fail")
• List a remedy that your system can't actually implement
• Go overboard 

Back to basics – 4 steps for writing a use case

UW CSE 403 38

1. Identify actors and their goals

• Actors: What users and (sub)systems interact with our system?

• Goals: What does each actor need our system to do?

• Trigger: What kicks off the interaction with the system

4 steps for writing a use case

UW CSE 403 39

1. Identify actors and goals

2. For each goal, identify what each actor needs the system to do
Main success scenario is the preferred "happy path”

• Easiest to read and understand
Capture each actor's intent and responsibility, from trigger to goal

• State what information passes between actor(s) and system
• Number each step (line)

4 steps for writing a use case

UW CSE 403 40

1. Identify actors and goals

2. For each goal, identify what each actor needs the system to do

3. List the variations to the main (success) flow

• These are alternate branches from the main path

• What are some options/enhancements that the user might want/expect

• Label with step number (success scenario line)
• Example variation to step 5:

• 5.1 <variation>; 5.1 <steps>; 5.1<continue at step 6>

4 steps for writing a use case

UW CSE 403 41

1. Identify actors and goals

2. For each goal, identify what each actor need our system to do

3. List the variations to the main flow
4. List the exception (error) flows

• Many steps can fail
• Describe failure-handling
• Label with step number (success scenario line)

• 5.1<failure condition>; 5.1 <actions>; 5.1<continue at
failure step 7>

Try it with a use case for your product

UW CSE 403 42

Goal

Actor

Trigger

Main (success) Flow

Variation (alternate)
Flow

Exception (error)
Flow

- Capture your thoughts –

Summing up use cases

UW CSE 403 43

• Focus on interaction
• Start with a request from an actor to the system
• End with the production of all the answers to the request

• Focus on essential behaviors, from actor’s point of view
• Don’t describe internal system activities
• Don’t describe the GUI in detail

• Be concise, clear, and accessible to non-programmers
• Easy to read
• Summary fits on a page
• Main success scenario, and variations and exceptions

See reference
materials
posted on the
Class Calendar

UW CSE 403 44

Switching gears to another technique

What are techniques used to specify requirements?
• Use cases
• Personas and user scenarios
• Storyboarding
• Paper prototyping
• Prototyping
• UML
• Feature list

UW CSE 403 45

Personas

A persona is a description of a person who is representative of a
population using your system

Each persona may have a different perspective of what they need

Example: Library catalog service (UW Libs)
Persona: Admin
Persona: Librarian
Persona: Student
Persona: Instructor

UW CSE 403 46

What might be an
analogy to a

persona in a use
case?

Personas can be described with cards

UW CSE 403 47

• 20 in 2022 (mockplus.com)

Mockplus: User Persona Templates for Free Download

Cards typically include:

• Persona name and photo/image
• A quote that captures their

goals and motivations
• Demographics (group they

represent)
• Computer competence and

usage
• Wants and needs
• Frustrations and pain points

Lots of great examples on the web

UW CSE 403 48

Mockplus: User Persona Templates for Free Download

User scenarios

UW CSE 403 49

For each persona you can define the requirements from that person’s
perspective through a user scenario

Example: As an instructor, I am constantly looking for class resources
that are relevant and up to date. Moreover, when I find a resource, I
want to know it’s available free-of-charge for the students and comes
with online access.

Example: As a student, I want to be able to have the search provide
smart results, so that I don’t spend hours wading through irrelevant
matches. I’d like to prioritize results that are timely, in-the-news, most-
popular, and most-referenced across the industry. I’d also like each
result to come with a summary for quick scanning.

Writing user scenarios

UW CSE 403 50

Doesn’t this sound like use cases!
persona ~= actor
scenario ~= goal (w/ flow)

Read: https://www.justinmind.com/blog/how-to-design-user-scenarios/

Your turn

• Describe the main persona (user) of your product
• Provide a user scenario to represent a goal (a feature) that the

system will light up

Persona:

Scenario:

UW CSE 403 51

Personas and scenarios are hugely valuable
• They tap into a fundamental human skill—the ability to make

predictions about how other people will react based on mental
models of them

• Enable us to capture inferences about the needs and desires of audience
segments

• Draw attention to “pain points” and opportunity for new solutions
• Serve to communicate user characteristics and their individual types of

requirements in a compact and easily understood way

UW CSE 403 52

Closing thoughts: watch out for these as you
requirements engineer

• Unclear scope leading to unclear requirements
• Finding the right balance (depends on customer, and the team):

• Comprehensible vs. detailed
• Graphics vs. tables and explicit and precise wording
• Short and timely vs. complete and late

• Capturing implementation details instead of requirements
• Projecting your own models/ideas
• Feature creep

UW CSE 403 53

Feature creep?

Feature creep is the gradual accumulation of features over time, beyond
what was originally committed and/or actually needed

54

Scope | Features

Time Resources

Why does it happen? Because features are fun!
• Developers like to code them
• Sales teams like to pitch them
• Users (think they) want them

Why can it be bad?
• Can put your project delivery at risk
• Too many options, more bugs, more delays,

less testing, …

For your project, consider
major features (P0/P1s) and

stretch features (P2s)

Project Management Triangle

Additional Material

UW CSE 403 55

Requirements can be extensive – leveraging
existing frameworks (categories, templates) can
help

UW CSE 403 56

● User features

● Performance and System Health

● Reliability

● Scalability

● Warranties or maintenance goals

● Possible or likely future goals

● Target platforms or environments

● Regulatory and legal

● External documentation, user “help”

● Marketing claims

● Logging and success metrics

● Manual testing guides

● Accessibility

● Internationalization, localization,
language support

● Troubleshooting guides

● Leak prevention

● Threat models and security guarantees

● User privacy

● Simplicity and usability

Meet Alistair Cockburn – Requirements SME

UW CSE 403 57
https://en.wikipedia.org/wiki/Alistair_Cockburn

Cockburn requirements template
1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
5. Other

• Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies

• Business rules (constraints)
• Performance demands
• Security, documentation
• Usability
• Portability
• Unresolved (deferred)

6. Human factors (legal, political, organizational, training)

UW CSE 403 58

Many companies
will have a template
for you to use

Uniformity is good
for you and the
customer

