Software Requirements

CSE 403 Software Engineering
Winter 2026

Today's Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

UW CSE 403

Recapping where requirements fit in

/ Common stages \

Virtually all SDLC models have
the following stages)

Requirements are at the top of
the list as we start the journey
of product development

o

Requirements
Design
Implementation
Testing

Release
Maintenance

/

UW CSE 403

Sharing a visual of their importance

i

(1=

How the customer
explained it

How the project
leader understood

How the analyst
described it

How the developer
wrote it

How the product

was documented
L]

How operations
installed it
L]

L

How the customer
was billed

How it was
supported

What customer
ally needed

What exactly are software requirements?

Requirements specify what to build

« describe what, not how
« describe customer needs, not how they'll be implemented
 reflect product design (product goals), not software design

Product requirements describe the product’s functionality in terms
understandable by customers and devs, with as close to zero ambiguity as

possible
-Isaac Reynolds, Google GPM

Let's work through an example

Are these good requirements for an audio
player?

* Available on web and mobile
* Provide volume control
 Provide ability to flag favorites using a pulldown menu
« Enable variable playback speed

* Propose songs using ChatGPT recommendations

* Propose songs based on customer selected genres

« Written in javascript for extensibility and reliability

UW CSE 403 6

low about our swing example

What are good and sufficient requirements for the swing?

 Attaches to a single branch of a tree
« Seats one person 3-5ft tall

« Swings when pushed

« Appeals to environmental advocates

UW CSE 403

Timeout: how do requirements differ
from specifications?

Think of as
customer requirements and
technical specifications

Requirements specify what to build from a customer
perspective

Specifications specify what to build from a developer
perspective

UW CSE 403

Requirements are hard but important

They help us:

- Understand precisely what is required of the software
- Ensure the product delights the customer

- Communicate this understanding precisely to all involved parties
- Common language for stakeholders

- Monitor and control production to confirm that system meets its
specification
- Know when the goal is reached and that it stays operable

In practice, they're used by many during SDLC

- Customers: what should be delivered (contractual base)
Project managers: scheduling and monitoring (progress indicator)
Designers: basis for a spec to design the system
Developers: a range of acceptable implementations
QA / Testers (DevTest): a basis for testing,
verification, and validation

UW CSE 403

Today's Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

UW CSE 403

12

Let IS St a rt W i t h CHAOS FACTORS OF SUCCESS

d FACTORS OF SUCCESS POINTS INVESTMENT

Executive Sponsorship 15 15%
Emotional Maturity 15 15%
7.“ —
< User Involvement 5 15 15%
. —— e
From a Standish report St aiin 15 —
on software project
Skilled Resources 10 10%
SUCCesS
Standard Architecture 8 8%
Customer involvement P i e
is 3rd highest factor of
° Modest Execution 6 6%
project success!
Project Management Expertise 5 5%
Clear Business Objectives < 4%

The 2015 Factors of Success. This chart reflects our opinion of the importance of each attribute and our recommendation of the amount of

https://WW}N.standishgroup.com/sample_research_fiIes/ CHAOSReport201 effort and investment that should be considered to improve project success.
5-Final.pd

Successful businesses always start with the
customer’s goal

btz Googe amazn G

Customer Understand
Focus on the obsession and serve the

The customer
Is always right

user and all rather than customer

else will follow competitor better than
focus anyone else

UW CSE 403 14

So, how do we engage with customers

|deas?

« Be a user yourself (but be careful not to bias)

» Talk with users informally (hallway chats, mixers)

« Talk with users formally (interviews, surveys, diary
studies, field studies)

« Build low-fidelity prototypes (mocks, UX prototypes,

eng prototypes)
« Launch and get feedback early (“launch and iterate”)

Keep your customer (user) at the center of the discussion
Listen, observe and ask clarifying questions

15

Do’'s and don'ts in requirements gathering

Do:

« Talk to the customers -- to learn how they work

« Ask questions throughout the process -- "dig" for requirements

« Think about why users do something in your service, not just what
« Allow (and expect) requirements to change later

Do’'s and don'ts in requirements gathering

Do:

« Talk to the customers -- to learn how they work

« Ask questions throughout the process -- "dig" for requirements

« Think about why users do something in your service, not just what
« Allow (and expect) requirements to change later

Don't:

« Be too specific or detailed

« Describe complex business logic or rules of the system

« Describe the exact user interface used to implement a feature
« Try to think of everything ahead of time* (caveats apply)

« Add unnecessary features not wanted by the customers

The whole process is more formally
known as requirements engineering

The science of eliciting, analyzing, documenting, and maintaining
requirements

As you collect your class project requirements (02 Requirements), consider
three categories:

* Functional requirements
* e.g. input-output behavior, customer visible features

* Non-functional requirements
* e.g. security, privacy, scalability

* Additional constraints
* e.g., programming language, frameworks, testing infrastructure

UW CSE 403 18

It's essential to prioritize

If everything is a “Priority 0" (PO), then
nothing is!

« PO means we'd be embarrassed not
to have this

o P1is what makes the feature better
than the competition

« P2 is nice to have

UW CSE 403

19

It's essential to prioritize

Consider the example of a
simple “camera” app.

If everything is a “Priority 0" (P0), then

nothing is!
» Takes photos.
o« PO means we'd be embarrassed not - Takes videos.
) » Crashes <0.01% of sessions.
to have this « Opens in <1000ms 90% of the time.
« Takes slow motion videos.
« P1is what makes the feature better . Takes time lapse videos.
" » Does 4K30 resolution.
than the competltlon » Supports manual photography controls.
.. » Supports RAW capture mode.
« P2 is nice to have

UW CSE 403 20

It's essential to prioritize

If everything is a "Priority 0" (P0O), then
nothing is!

« PO means we'd be embarrassed not
to have this

« P1is what makes the feature better
than the competition

« P2 is nice to have

UW CSE 403

PO
PO
PO
PO
P
P
P
P2
P2

Consider the example of a
simple “camera” app.

Takes photos.

Takes videos.

Crashes <0.01% of sessions.

Opens in <1000ms at the P90.

Takes slow motion videos.

Takes time lapse videos.

Does 4K30.

Supports manual photography controls.
Supports RAW capture mode.

21

Today's Outline

1. What are requirements and what is their value?
2. How can we gather requirements?

3. What are techniques used to specify them?
* Use cases
« Personas and user scenarios
« Storyboarding
« Paper prototyping
* Prototyping
* Feature list

UW CSE 403

22

Start with a requirements template

Cockburn’s requirement template

1. Purpose and scope

SRR

Terms (glossary)
Use cases (the central artifact of requirements)

Technology used

Other
a. Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies
b.Business rules (constraints)
c. Performance demands
d.Security, documentation
e. Usability
f. Portability
g.Unresolved (deferred)

Human factors (legal, political, organizational, training)
UW CSE 403

https://alistaircockburn.com/

Be it the Cockburn

requirements template or
another — central to all — in
one form or another — are

Use Cases

23

What is a use case

A use case is a written description of a user's interaction
with the software system to accomplish a goal

Terminology

Actor: user interacting with the system (may be another system)
« System: the software product

Goal: desired outcome of the primary actor
« Flow: sequence of actions to achieve the goal

UW CSE 403

24

Use a use case to capture a requirement

Camera app

1. As a parent, | want to take sharp photos of my kids in
medium-low light so | can have memories of early
holiday mornings.

As a [user], | want to
[action] so that

[result] 2. As a creative, | want to adjust the look-and-feel of my
photos so that they match how | remember the moment.
3. As a YouTube Shorts creator, | want to caption my videos
Use cases ca ptu re so that people without sound don't skip my videos.
functional

4. As a restaurateur, | want to take fresh, juicy-looking
photos of food so that customers want to eat at my
restaurant.

requirements

Use a more formal
use case to describe
the requirement (the

goal) as a journey

A sequence of
actions taken by the
“system” and the
“actor”

Requirements Milestone requires
you to provide formal use cases

Actor: As a parent (“actor”),

Goal: | want to take pictures of my young kids where
they're all smiling.

Steps:

1.

2.

3.

4.

User arranges the family for a photo

User presses the shutter 3 times in 5 seconds
System saves 3 full-quality images

User taps “gallery”

System opens the gallery and shows a button to
“select a better moment”

User taps the button

System creates and shows the “Best Take”"

User taps “Save as copy”

System shows user the saved copy in the gallery

.. Q. UW Libraries

BASIC ADVANCED JOURNAL BROWSE KNOWN

.' Sea rch SEARCH SEARCH SEARCH SEARCH ISSUES

Librai Y mpl
I ra a p p exa p e Search anything ibrary Resources ~ Articles, Books and More

Goal Reserve a book in the library app
Actor Library patron
Main 1. User selects the search screen
(success) | 2. System presents a search box (with filters)
flow 3. User types in the book title
4. System presents the books that match and
branch locations
9. User selects location and reserves
6. System confirms and re-presents home
page

UW CSE 403 27

Q. UW Libraries
BASIC ADVANCED JOURNAL BROWSE KNOWN

' Sea rch SEARCH SEARCH SEARCH SEARCH ISSUES

o
@

Library app example

Search anything X Library Resources ~ Aricles, Books and More

Goal Reserve a book in the library app
Actor Library patron
Main 1. User selects the search screen Flow
(success) | 2. System presents a search box (with filters) describes
flow 3. User types in the book title g‘;‘f&i‘gf”s
4. System pregents the books that match and actor and
branch locations system
5. User selects location and reserves
6. System confirms and re-presents home
page

UW CSE 403 28

What is a use case

Use cases capture the functional requirements of a system

A use case is an example behavior of the system

Written from an actor's point of view

5-10 clearly written steps (flow) lead to a “main success scenario”
Also used to describe “variation” and “exception” scenarios

Can this requirement be described with a use case?
 The library system must have 99.9% uptime
« Checkouts may not be for longer than 30 days

UW CSE 403

29

What is a use case

Use cases capture the functional requirements of a system

A use case is an example behavior of the system

Written from an actor's point of view

5-10 clearly written steps (flow) lead to a “main success scenario”
Also used to describe “variation” and “exception” scenarios

UW CSE 403

30

Try it with a use case for your product

Capture your thoughts and we’ll discuss!

Goal

Actor

Main
(success)
flow

L RN

UW CSE 403

Use cases are hugely valuable

« Capture a level of functionality (list of goals)

 Establish an understanding between the customer and the
developers of the requirements (success scenarios)

 Alert developers of variations (extensions) and exceptions
(errors) cases to test

UW CSE 403

32

Let's double click on these other flows

Variations and exceptions can be thought of as branches in a use case useful
for identifying other situations that need to be handled

Variation (alternate) flows:

» These paths describe extensions 8 Q, UW Libraries
s® Search

on the main theme

° Another Way to meet th e g Oal software engineering X Library Resources

Course Reserves

» Library search - Patron enters an Current UW students, APORY SR
author or subject or category

UW CSE 403 33

Let's double click on these other flows

Exception (error) flows: V¢ Search

« These paths describe failure SN
CO n d iti O n S Current UW students, faculty, and staff] Log in for all services X DISMISS

* What happens when the goal
° ° Not Finding What You Are Looking For?
is not achieved

There are no results matching your search "abcdefghijkimnopgrstuvaa™ s Search WorldCat
Suggestions:

° Li b ra ry Sea rC h _ n 0 b OO k i S « Make sure that all words are spelled correctly.

« Try a different search scope
. « Try different keywords
found, system times out - Ty garrtkors

o Try fewer keywords.

UW CSE 403 34

We can capture this in our template

Goal Reserve a book in the library app
Actor Library patron
Main 1. User selects the search screen
(success) 2. System presents a search box (with filters)
flow 3. User types in the book title
4. System presents the books that match and branch locations
5. User selects location and reserves
6. System confirms and represents home page
Valtriatio:l (In step 3)
g’ ernate) 3.1 User types in an author ...
ow 3.2 User types in a subject ...

UW CSE 403

Here's another example — ATM machine

. |
Goal Withdraw money Precondition | Authenticated in
Actor Bank patron Trigger Select withdraw
System ATM
Main 1. System displays account types
(success) 2. User chooses type
flow 3. System asks for amount to withdraw
4. User enters amount
5. System debits user’s account and dispenses money
6. User removes money
/. System prints and dispenses receipt
Exception (In step 5)
flow 5.1.a System notifies that account funds are insufficient
5.1.b System displays current balance [and returns to step 1]

These other flows are hugely valuable

Do
Think about how every step of the use case could be enhanced or fail
Give a plausible response to each extension from the system
Response should either jump to another step of the case, or end it

Don’'t
- List things outside the scope of the use case ("User's power goes out")
Make unreasonable assumptions ("DB will never fail")

List a remedy that your system can't actually implement
Go overboard ©

UW CSE 403 37

Back to basics — 4 steps for writing a use case

1. Identify actors and their goals
« Actors: What users and (sub)systems interact with our system?
« Goals: What does each actor need our system to do?

 Trigger: What kicks off the interaction with the system

UW CSE 403 38

4 steps for writing a use case

1. Identify actors and goals

2. For each goal, identify what each actor needs the system to do

Main success scenario is the preferred "happy path”
 Easiest to read and understand

Capture each actor's intent and responsibility, from trigger to goal
 State what information passes between actor(s) and system
* Number each step (line)

UW CSE 403

39

4 steps for writing a use case

1. Identify actors and goals
2. For each goal, identify what each actor needs the system to do
3. List the variations to the main (success) flow
« These are alternate branches from the main path
« What are some options/enhancements that the user might want/expect

« Label with step number (success scenario line)

« Example variation to step 5:
* 5.1 <variation>; 5.1 <steps>; 5.1<continue at step 6>

UW CSE 403 40

4 steps for writing a use case

1. Identify actors and goals
2. For each goal, identify what each actor need our system to do

3. List the variations to the main flow
4. List the exception (error) flows
« Many steps can fail
» Describe failure-handling

« Label with step number (success scenario line)
« 5.1<failure condition>; 5.1 <actions>; 5.1<continue at

failure step 7>

UW CSE 403

41

Try it with a use case for your product

- Capture your thoughts —

Goal

Actor

Trigger

Main (success) Flow

Variation (alternate)
Flow

Exception (error)
Flow

Summing up use cases

« Focus on interaction
- Start with a request from an actor to the system
- End with the production of all the answers to the request

« Focus on essential behaviors, from actor’s point of view
- Don't describe internal system activities
- Don't describe the GUI in detall

- Be concise, clear, and accessible to non-programmers
- Easy to read
- Summary fits on a page
- Main success scenario, and variations and exceptions

UW CSE 403

43

See reference
materials
posted on the
Class Calendar

Name The Use Case name. Typicallythe name s of the format <action> + <object=.

ID An identifierthatis unique to each Use Case.

Description A brief sentence that states what the userwants to be able to do and what benefithe will derive.

Actors The type of user who interacts with the systemto accomplishthetask. Actors are identified by role
name.

Organizational The value the organization expects to receive from having the functionality described. Ideally this

Benefits is a link directlyto a Business Objective.

Frequency of Use | Howoftenthe Use Caseis executed.

| Triggers Concrete actions made bythe user withinthe systemto start the Use Case.

Preconditions Any states that the system must be in or conditions that must be met before the Use Case s
started.

Postconditions Any states that the system mustbein or conditions that must be met after the Use Caseis

completed successfully. These will be metif the Main Course or any Alternate Courses are
followed. Some Exceptions may resultin failure to meetthe Postconditions.

Main Course

The mostcommon path of interactions between the user andthe system.
1.Step 1
2.5tep 2

Alternate Courses

Alternate paths throughthe system.

AC1: <condition forthe alternate to be called>
1.Step 1

2.Step 2

AC2: =condition forthe alternate to be called>
1. Step 1

Exceptions

Exception handling by the system.

EX1: <condition forthe exceptionto be called>
1.Step 1

2.Step 2

EX2 <conditionforthe exceptionto be called=
1.Step 1

UW CSE 403

44

Switching gears to another technique

What are techniques used to specify requirements?
* Use cases
* Personas and user scenarios
 Storyboarding
* Paper prototyping
* Prototyping
« UML
« Feature list

UW CSE 403

45

Personas 9 0 Q 0 o

A persona is a description of a person who is representative of a
population using your system

Each persona may have a different perspective of what they need

Example: Library catalog service (UW Libs)

Persona: Admin What might be an
Persona: Librarian analogy to a
Persona: Student persona in a use

2
Persona: Instructor case :

UW CSE 403 46

Personas can be described with cards

Mockplus: User Persona Templates for Free Download

UW CSE 403

Cards typically include:

* Persona name and photo/image

» A quote that captures their
goals and motivations

« Demographics (group they
represent)

« Computer competence and
usage

« Wants and needs

* Frustrations and pain points

47

Lots of great examples on the web

“I'm looking for a medium
to connect with different
sportsmen in my
locality.”

Heather
- Wallace : HER NEEDS
Passionate Energetic
Adaptive Personable
Resourceful Creative

Sports / fitness / mobile apps Interests 00®0

Nick Jame -

Cycling Lazying around Usage ®ed®
Male, 26 Trekking Unproductive days .
Softv Football Not getting a break
Pa Nature Uncaompetitiveness
Frustrations
Mockplus: User Persona Templates for Free Download e o
that ww do

UW CSE 403

User scenarios

For each persona you can define the requirements from that person’s
perspective through a user scenario

Example: As an instructor, | am constantly looking for class resources
that are relevant and up to date. Moreover, when | find a resource, |

want to know it's available free-of-charge for the students and comes
with online access.

Example: As a student, | want to be able to have the search provide
smart results, so that | don't spend hours wading through irrelevant
matches. I'd like to prioritize results that are timely, in-the-news, most-
popular, and most-referenced across the industry. I'd also like each
result to come with a summary for quick scanning.

UW CSE 403 49

Doesn’t this sound like use cases!

Writing user scenarios | persona ~= actor

scenario ~= goal (w/ flow)

What to Consider When Writing Scenarios
Good scenarios are concise but answer the following key questions:

« Who is the user? Use the personas that have been developed to reflect the real, major
user groups coming to your site.

« Why does the user come to the site? Note what motivates the user to come to the site
and their expectations upon arrival, if any.

 What goals does he/she have? Through task analysis, you can better understand the

what the user wants on your site and therefore what the site must have for them to leave
satisfied.

Read: https://www.justinmind.com/blog/how-to-design-user-scenarios/
UW CSE 403 50

Your turn

* Describe the main persona (user) of your product

« Provide a user scenario to represent a goal (a feature) that the
system will light up

Persona:

Scenario:

UW CSE 403 51

Personas and scenarios are hugely valuable

* They tap into a fundamental human skill—the ability to make
predictions about how other people will react based on mental
models of them

* Enable us to capture inferences about the needs and desires of audience
segments

* Draw attention to “pain points” and opportunity for new solutions

* Serve to communicate user characteristics and their individual types of
requirements in a compact and easily understood way

| \)
Q.

UW CSE 403 52

Closing thoughts: watch out for these as you
requirements engineer

* Unclear scope leading to unclear requirements

« Finding the right balance (depends on customer, and the team):
Comprehensible vs. detailed
Graphics vs. tables and explicit and precise wording
Short and timely vs. complete and late

« Capturing implementation details instead of requirements
* Projecting your own models/ideas

* Feature creep

UW CSE 403

For your project, consider

Featu re Cree p? major features (PO/P1s) and

stretch features (P2s)

Feature creep is the gradual accumulation of features over time, beyond
what was originally committed and/or actually needed

/ \ Why does it happen? Because features are fun!
Scope | Features)
« Developers like to code them

« Sales teams like to pitch them
« Users (think they) want them

Why can it be bad?
« Can put your project delivery at risk
« Too many options, more bugs, more delays,

Time Resources)
less testing, ...

Project Management Triangle 54

Additional Material

Requirements can be extensive — leveraging
existing frameworks (categories, templates) can
help

o Marketing claims

o User features o Logging and success metrics

o Performance and System Health e Manual testing guides

o Reliability o Accessibility

o Scalability o Internationalization, localization,

o Warranties or maintenance goals language support

o Possible or likely future goals » Troubleshooting guides

o Target platforms or environments » Leak prevention

« Regulatory and legal o Threat models and security guarantees

o External documentation, user “help” » Userprivacy

o Simplicity and usability

UW CSE 403 56

Meet Alistair Cockburn — Requirements SME

Alistair Cockburn (/ z2lister ‘koubam/ AL-ist-ar KOH-barn) is an American computer Alistair Cockburn
scientist, known as one of the initiators of the agile movement in software development
He cosigned (with 17 others)"! the Manifesto for Agile Software Development.!}

Agile Software
Development E3t

Life and career [edt] it
Cockburn started studying the methods of object oriented (OO) software development for
IBM. From 1994, he formed "Humans and Technology" in Salt Lake City. He obtained his
degree in computer science at the Case Western Reserve University. In 2003, he

received his PhD degree from the University of Oslo.

Cockburn helped write the Manifesto for Agile Software Development in 2001, the agile
PM Declaration of Interdependence in 2005, and co-founded the International Consortium
for Agile in 2009 (with Anmed Sidky and Ash Rofail). He is a principal expositor of the use
case for documenting business processes and behavioral requirements for software, and
inventor of the Cockburn Scale for categorizing software projects.

Writing Effective
Use Cases

U

Alistair Cockburn in 2007

The methodologies in the Crystal family (e.g., Crystal Clear), described by Alistair
Cockburn, are considered examples of lightweight methodology. The Crystal family is Nationality American
colour-coded to signify the "weight” of methodology needed. Thus, a large project which | ©@ccupation Computer programmer
has consequences that involve risk to human life would use the Crystal Sapphire or

Crystal Diamond methods. A small project might use Crystal Clear, Crystal Yellow or Crystal Orange.

Cockburn presented his Hexagonal Architecture (2005) as a solution to problems with traditional layering, coupling and entanglement.
In 2015, Alistair launched the Heart of Agile movement which is presented as a response to the overly complex state of the Agile
industry.

Alistair Cockburm

Selected publications |edi)

« Surviving Object-Oriented Projects, Alistair Cockburn, 1st edition, December, 1997, Addison-Wesley Professional, ISBN 0-201-
49834-0.
* Writing Effective Use Cases, Alistair Cockburn, 1st edition, January, 2000, Addison-Wesley Professional, ISBN 0-201-70225-8.

——— G 57
i e s , A https://en.wikipedia.org/wiki/Alistair_Cockburn
* Agile Software Development, Alistair Cockburn, 1st edition, December 2001, Addison-Wesley Professional, ISBN 0-201-69969-9.

Cockburn requirements template

1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements) Many companies
will have a template
4. Technology used for you to use
5. Other
* Development process: participants, values (fast-good-cheap), Uniformity is good
visibility, competition, dependencies for you and the
* Business rules (constraints) customer
* Performance demands
* Security, documentation
* Usability
* Portability

Unresolved (deferred)
6. Human factors (legal, political, organizational, training)

UW CSE 403 58

