
Understanding CI/CD in 
Modern Software 
Development
From Code Commits to Automatic Deployments

Zachary Sperske, Staff Software Engineer @ Affirm



About Me

• BS in Computer Science from UCSB

• Mobile engineer (primarily Android)

• 12 years of experience building Android, with some 

experience building iOS & React Native (as of recently)





Objectives & Agenda

1 Objectives
• Understand CI/CD principles and practices

• Explore benefits and challenges of adopting CI/CD

• See a demo of CI/CD in action

• Learn about popular CI/CD tools

• Discuss real-world examples and best practices

2 Agenda
1. What is CI/CD?

2. Why is CI/CD important?

3. Core components Integration, Delivery, Deployment)

4. CI/CD Demo

5. Common CI/CD tools

6. Best practices & challenges

7. Q&A



Software Development Lifecycle SDLC 
Overview

Planning 1
Analysis

2

Design
3

Implementation
4

Testing
5Deployment

6

Maintenance
7

CI/CD fits primarily at the Implementation, Testing, and Deployment phases.



DevOps & 
Collaboration
DevOps = Development + 
Operations
Emphasizes automation, continuous feedback, and shared 

responsibility. Breaks down traditional silos to speed up 

delivery and improve quality.



Continuous Integration CI

Definition
Merging developer code changes 

into a shared repository multiple 

times a day, with automated 

builds and tests.

Core Principles
• Frequent commits (small, 

incremental changes)
• Automated builds triggered 

on every commit
• Automated tests for rapid 

feedback

Benefits
• Early bug detection

• Reduced integration headaches

• Improved team collaboration



CI Workflow Example

PR Opened
In a shared repo (e.g., Github)

Change Detection
GitHub Actions detects the commit

Automated Build
Build process begins

Test Suite Runs
Unit, integration tests, etc.

Feedback Provided
Pass/fail, code coverage, etc.



Continuous Delivery vs. Continuous 
Deployment
Continuous Delivery 
CD
Codebase is always in a deployable state

May require manual approval to push to production

Typical for mobile apps due to app store review process

Continuous Deployment 
CD
Fully automated release process to production

No manual steps once tests pass

Common for web sites & backend systems



Common CI/CD 
Tools

Hosted Services
• GitHub Actions

• GitLab CI/CD

• CircleCI

• Travis CI

• Buildkite

Self-Managed Tools
• Jenkins

• TeamCity

• Bamboo

Supporting 
Technologies
• Docker for 

containerization
• Kubernetes for 

container orchestration
• Infrastructure as Code 

Terraform, Ansible)



Demo

https://github.com/zsperske/cicd-demo


CI/CD Best 
Practices

1 Version Control Strategy
Feature branch vs Trunk-Based 

Development. Pull requests with 

code review.

2 Automated Testing
Unit tests, integration tests, 

end-to-end tests.

3 Quality Checks
Linting, static analysis, security 

scans.

4 Pipeline Structure
Distinct stages Build → Test → Deploy). Automated 

gating between stages.

5 Monitoring & Observability
Logging, metrics, alerts. Automated rollbacks on 

failure.



Challenges

Cultural Resistance
Solution: Provide training & 

leadership support

Tooling Complexity
Solution: Start small, pick tools that 

integrate well

Maintaining Quality
Solution: Expand automated tests, 

maintain test environments

Scalability & Performance
Solution: Parallelize builds, optimize caching, flaky test 

reporting

Security & Compliance
Solution: Integrate security scanning & compliance 

checks in the pipeline



Comparing Good vs. Bad (and No) 
CI/CD



No CI/CD Setup

1 Manual integration & releases
Large, infrequent code merges lead to conflicts discovered late. 

Error-prone and time-consuming deployment steps.

2 Limited or no automated testing
Bugs often caught in production. High risk of critical downtime.

3 Long feedback loops
Delayed discovery of issues. Slow response to user needs or market 

changes.

4 Business Impact
High operational costs, more production outages. Negative user 

experience and potential revenue loss.



Poorly Implemented CI/CD
Incomplete or rarely used pipelines
Build or test stages not automatically triggered, may be skipped or done inconsistently. 

Minimal test coverage
Automated tests exist but don't cover critical functionality. Production bugs still leak 

through. False sense of security when pipelines pass without catching issues.

Unreliable pipelines
Frequent pipeline failures without clear resolution steps. Tests that pass on one run 

but fail on the next. Teams lose trust and revert to manual processes.

Business Impact
Reduced benefit from automation; still encountering late-stage errors. Wastes time 

troubleshooting unclear pipeline failures.



Robust CI/CD Setup
Fully automated build & test pipeline
Every commit triggers a build and thorough suite of tests. Faster 

feedback; issues discovered and fixed early.

Frequent, small releases
Easier to deploy, roll back if necessary, and reduce release risk. 

Users see new features and fixes quickly.

High confidence in deployment
Well-defined gating stages ensure only stable code is promoted. 

Post-deployment monitoring and automatic rollback if critical failures 

occur.
Business Impact
Faster time-to-market, improved quality & reliability, enhanced 

developer productivity, strong DevOps culture.



How is it really done? 



Summary & Key 
Takeaways

1 CI/CD Principles
Small, frequent changes + 

automation = faster, more 

reliable releases

2 Career Impact
DevOps skill sets are 

extremely valuable

3 Next Steps
• Try a simple CI pipeline on a personal project

• Explore open-source CI/CD tools Jenkins, GitLab)



● How does Affirm balance the need for rapid feature development while maintaining code quality? Are there specific strategies 

or processes your team follows?

● What was the biggest adjustment for you when transitioning from college to your first full-time software engineering role? 

● In your opinion, what was the most important thing you learned about while in industry that isn't covered at university?

● Whatʼs one piece of career advice that has had the biggest impact on your growth as an engineer?

● How do you decide when to specialize in a specific domain (e.g., mobile, backend, infra) versus remaining a generalist? 

● How can a new grad best prepare for success in their first software engineering job? 

● Advice on trying to get your first cs job? Advice for those who don't have internship experience, but trying to get a full-time 

job?

● What skills or knowledge did you wish you had developed more in college before starting your career? 

● What is your favorite memory as a software engineer?



Links & Info
● My LinkedIn
● Cursor IDE
● Github Repo
● Firebase

https://www.linkedin.com/in/zachary-sperske/
https://www.cursor.com/
https://github.com/zsperske/cicd-demo
https://firebase.google.com/


Q&A
All questions welcome!


