
Code Reviews
CSE 403 Software Engineering
Winter 2025

Today’s outline
Code Reviews

• What are they
• Why are they important
• What to consider when we do them
• Let’s practice

Course WrapUp

Final release and retrospectives next week!
2

• Review: a constructive review of a fellow team-member’s
artifact (design, specification, code), providing suggested
improvements
– documentation
– defects in program logic, efficiency
– program structure
– coding standards & uniformity with codebase
... everything is fair game

• Feedback → revision / refactoring → (loop) → approval

3

Reviews (generally)

• Code review: a constructive review of a fellow developer’s
code

• A required sign-off from another team member before a
developer is permitted to check in changes or new code

4

Code reviews

5

“Let’s Go Team!”

Attribution: an excited engineer with a great attitude

6

“Let’s Get This Merged”

Attribution: an eager engineer with a literal translation

7

Attribution: an engineer that probably doesn’t want to do
code review, or a quick stamp of approval after a thorough
code review

“Looks Good to Me”

8

9

Why code review?

Didn’t we already test?

Code reviews are valuable
• Catch many bugs and design flaws early
• > 1 person has seen every piece of code

– Insurance against author’s disappearance (“winning lottery”)
– Accountability (both author and reviewers are accountable)

• Forcing function for documentation and code improvements
– Authors must articulate their decisions
– Authors participate in the discovery of flaws
– Prospect of a review raises your quality threshold

• Less experienced devs get experience (without hurting code quality)
– Pair them up with experienced developers
– Learn by example by being a reviewer as well as a reviewee

• Promote teamwork and build trust
10

• Average defect detection rates
• Unit testing: 25%
• Integration testing: 45%
• Design and code inspections: 55% and 60% <<<<<<<<!!

• 11 programs developed by the same group of people
• No reviews: average 4.5 errors per 100 LOC
• With reviews: average 0.82 errors per 100 LOC <<<<<<<<!!

• After AT&T introduced reviews
• 14% increase in productivity and a 90% decrease in defects <<<<<!!

11

Let’s look at the data

(Steve McConnell’s Code Complete)

Code Reviews at Google

"All code that gets submitted needs to be reviewed by at least
one other person, and either the code writer or the reviewer
needs to have readability in that language. Most people use
Mondrian [now Critique] to do code reviews, and obviously, we
spend a good chunk of our time reviewing code."

-- Amanda Camp, Software Engineer, Google

See: https://google.github.io/eng-practices/review/
12

Code reviews at Yelp

“At Yelp we use review-board. An engineer works on a branch
and commits the code to their own branch. The reviewer then
goes through the diff, adds inline comments on review board and
sends them back. The reviews are meant to be a dialogue, so
typically comment threads result from the feedback. Once the
reviewer's questions and concerns are all addressed, they'll click
"Ship It!" and the author will merge it with the main branch for
deployment the same day.”

-- Alan Fineberg, Software Engineer, Yelp
13

Example dialogue

https://github.com/apple/swift/pull/34094

1
4

Code reviews at WotC

15

“At Wizards we use Perforce for SCM. I work with stuff that
manages rules and content, so we try to commit changes at the
granularity of one bug at a time or one card at a time. Our team is
small enough that you can designate one other person on team as
a code reviewer. Usually you look at code sometime that week, but
it depends on priority. It’s impossible to write sufficient test
harnesses for the bulk of our game code, so code reviews are
absolutely critical.”

-- Jake Englund, Software Engineer, MtGO

Code reviews at
"Once an engineer has prepared a change, she submits it to this [code
review] tool, which will notify the person or people she has asked to review
the change, along with others that may be interested in the change – such as
people who have worked on a function that got changed.

At this point, the reviewers can make comments, ask questions, request
changes, or accept the changes. If changes are requested, the submitter must
submit a new version of the change to be reviewed. All versions submitted
are retained, so reviewers can compare the change to the original, or just
changes from the last version they reviewed. Once a change has been
submitted, the engineer can merge her change into the main source tree for
deployment to the site during the next weekly push, or earlier if the change
warrants quicker release."

- Ryan McElroy, Software Engineer, Facebook
16

17

What to consider with a code review
Best practices

First, agree on a plan with your team
• What has to be reviewed:

– A document (requirements, specification, guide, …)
– A coherent module (sometimes called an “inspection”)
– A single checkin or code commit (incremental review)

• Who participates:
– One other developer
– A group of developers

• Where:
– Email/electronic
– In-person meeting

• Best to prepare beforehand: artifact is distributed in advance
• Preparation usually identifies more defects than the meeting

• When:
- What’s the expected turn around time

18

Common for big picture reviews: holistic

• Review the goal, the architecture, the design, or an entire
component

• Each reviewer focuses where their area of expertise
– Mark up with comments
– Identify most important issues

• At meeting, may go around the table raising one issue
– Discuss the reasons for the current approach and possible improvements

• Author addresses all issues in comments
– Not just those raised in the meeting

19

Common for code reviews: incremental

• Each change is reviewed before it is committed
• No change is accepted without signoff by a “committer”

– Part of the “plan” is, who can do the actual commit
– Committer is assumed to know the whole codebase well; most

often is the developer of the change
• Code review can (d)evolve into a design discussion

20

Next, establish the goal of the code review
• Verification: are we building the system right?
• Validation: are we building the right system?

• Presence of good properties?
• Absence of bad properties?

• Identifying errors?
• Confidence in the absence of errors?

• Robust? Safe? Secure? Available? Reliable?
• Understandable? Modifiable?
• Cost-effective?
• Usable?

21

And clarify what exactly is being asked

A Google guideline:

“Make sure to review every line of code you’ve been asked to
review, look at the context, make sure you’re improving code
health, and compliment developers on good things that they do.”

22

Leverage review checklists
Consider if -

● The code is well-designed.
● The functionality is good for the users of the code.
● Any UI changes are sensible and look good.
● Any parallel programming is done safely.
● The code isn’t more complex than it needs to be.
● The developer isn’t implementing things they might need in the future but don’t know they

need now.
● Code has appropriate unit tests.
● Tests are well-designed.
● The developer used clear names for everything.
● Comments are clear and useful, and mostly explain why instead of what.
● Code is appropriately documented (generally in g3doc).
● The code conforms to your style guides.

See: https://google.github.io/eng-
practices/review/reviewer/looking-
for.html

23

24

Practice
Let’s do a code review

public class Account {
double principal,rate; int daysActive,accountType;

public static final int STANDARD=0, BUDGET=1,
PREMIUM=2, PREMIUM_PLUS=3;

}

public static double calculateFee(Account[] accounts)
{

double totalFee = 0.0;
Account account;
for (int i=0;i<accounts.length;i++) {

account=accounts[i];
if (account.accountType == Account.PREMIUM ||

account.accountType == Account.PREMIUM_PLUS)
totalFee += .0125 * (// 1.25% broker's fee

account.principal * Math.pow(account.rate,
(account.daysActive/365.25))
- account.principal); // interest

}
return totalFee;

}
25

26

Good
resource
to learn
some code
styles
(patterns)

Be a human as you do your review
1. Settle style arguments with a style guide

2. Let computers do the boring parts: linters/formatters/CI

3. Give code examples (build trust)

4. Never say “you” (focus on the code, not the coder!); “we” = team ownership

5. Requests and questions, not commands and criticism … frame it as an in-

person conversation

6. Offer sincere praise

7. Incremental improvements instead of perfection

8. Handle stalemates proactively
See: https://mtlynch.io/human-code-reviews-1/27

28

public class Account {
double principal,rate; int daysActive,accountType;

public static final int STANDARD=0, BUDGET=1,
PREMIUM=2, PREMIUM_PLUS=3;

}

public static double calculateFee(Account[] accounts)
{

double totalFee = 0.0;
Account account;
for (int i=0;i<accounts.length;i++) {

account=accounts[i];
if (account.accountType == Account.PREMIUM ||

account.accountType == Account.PREMIUM_PLUS)
totalFee += .0125 * (// 1.25% broker's fee

account.principal * Math.pow(account.rate,
(account.daysActive/365.25))
- account.principal); // interest

}
return totalFee;

}
29

Improved code (page 1)
/** An individual account. Also see CorporateAccount. */
public class Account {

private double principal;
/** The yearly, compounded rate (at 365.25 days per year). */
private double rate;
/** Days since last interest payout. */
private int daysActive;
private Type type;

/** The varieties of account our bank offers. */
public enum Type {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS}

/** Compute interest. **/
public double interest() {

double years = daysActive / 365.25;
double compoundInterest = principal * Math.pow(rate, years);
return compoundInterest – principal;

}

/** Return true if this is a premium account. **/
public boolean isPremium() {

return accountType == Type.PREMIUM ||
accountType == Type.PREMIUM_PLUS;

}

30

Improved code (page 2)

/** The portion of the interest that goes to the broker. **/
public static final double BROKER_FEE_PERCENT = 0.0125;

/** Return the sum of the broker fees for all the given
accounts. **/
public static double calculateFee(Account[] accounts) {

double totalFee = 0.0;
for (Account account : accounts) {

if (account.isPremium()) {
totalFee += BROKER_FEE_PERCENT * account.interest();

}
}
return totalFee;

}

}

31

32

Writing a good pull request is also
important

“What could go wrong?”
Famous last words

Trust me bro, it works on my machine

33

Writing a good pull request
Think like a reviewer

• Use descriptive but concise title and summary
• Describe context, rationale, and alternatives considered
• Link to relevant resources (specs, issues/bug tracker, previous PR)
• Provide screenshots/recordings for UI changes

See:
How to write the perfect pull request
https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/

Writing good CL descriptions
https://google.github.io/eng-practices/review/developer/cl-descriptions.html

34

Congrats, 403 – it’s a wrap! (almost)

35

Final release demos next week

Most time should be demo’ing your live product, with a few
minutes for your reflections – what you learned, what you might
do differently for v2.0

Is this all now so familiar? You’ve lived it!

A SDLC defines how to produce software through a series of stages

36

Goals of each stage

• Define a clear set of actions to perform
• Produce tangible (trackable) items
• Allow for work revision
• Plan actions to perform in the next stage

Common stages

• Requirements
• Design
• Implementation
• Testing
• Release
• Maintenance

Key question: how to combine the stages and in what order

By the end of the quarter, you’ll have…

37

• Been exposed to some of the best software
development practices in use today

• Understand how software is produced – from
conception to continuous delivery and release

• Developed skills to effectively collaborate with
others towards a common delivery goal

• Experienced the responsibilities, issues and
tradeoffs involved in making decisions as software
engineers

It’s a journey that will continue
• Compare your skills today to a quarter ago

– Bottom line: Your project would be easy for you
• This is a measure of how much you have learned

• Your next project can be much more
ambitious

• You will continue to learn
– Building interesting software systems is never easy

• Like all worthwhile endeavors
– Practice is a good teacher

• Requires thoughtful introspection
• Don’t learn only by trial and error 

38

Onward!

• Building products and services is fun and rewarding
– Especially when you build them successfully

• Pay attention to what matters
– Use the techniques and tools of CSE 403 effectively

39

Go forth and ship amazing products that delight your
customers, again and again

Course evaluation

• Please complete the course evaluation form online
– Useful to future students
– Useful to course staff
– Useful to the department

40

