
More on Software Testing
CSE 403 Software Engineering
Winter 2025

Today’s outline

Software testing
• White box testing

• Code coverage
• Mutations

• Integration testing

Teammate survey - see Ed Chat for your link (required)
• due today by 11:59pm

Guest industry speaker this Wednesday, Zach Sperske, Affirm
• survey (your takeaway) (required) due after-class Wednesday

2

Watch Ed and
the Calendar
for class
updates!

Jumping into a demo – calculator module

3

Scenario
• You’ve inherited responsibility for some code
• There is a test suite! Woohoo!
• But you don’t know how well the tests cover

the code / how adequate they are
• So you’ll run coverage analysis to provide

some insights

GNU’s gcov is an available option

4

calculator.c
test_calculator.c

report
visualizer

5

Intro to gcov demo

Link it to your CI automation

Consult as part of your testing
process and code reviews, too

6Read: https://homes.cs.washington.edu/~rjust/publ/google_coverage_fse_2019.pdf

Visualization tools
are built on top of

code instrumentation
tools

Layered architecture!

Code coverage at

Back to basics: code coverage metrics

Code coverage testing: examines what fraction of the code under
test is reached by existing unit tests

Structural code coverage metrics include:
• Statement coverage (what we looked at with gcov)
• Condition coverage
• Decision coverage

Which type of
coverage

requires the
most tests?

7

Code coverage: the basics

Average of
the absolute
values of an
array of
doubles

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException(“Nums cannot be null or empty!");
}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}
return sum/numbers.length;

}

8

Create the control flow graph
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

9

And align the two to help identify tests
public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {

throw new IllegalArgumentException(“Numbers must not be null or empty!");
}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {

double d = numbers[i];
if (d < 0) {

sum -= d;
} else {

sum += d;
}

}
return sum/numbers.length;

}

10

Statement coverage
Every statement in the program must be executed at least once by the
tests

11

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

In the control flow graph,
this is equivalent to node
coverage

12

Condition and decision coverage
Condition: a boolean expression that cannot be decomposed into simpler
boolean expressions (e.g., an atomic boolean expression)

Decision: a boolean expression that is composed of conditions, using 0 or
more logical connectors (a decision with 0 logical connectors is a condition)

Quiz:
If (a | b) { …}

What are a and b?
What is the boolean expression (a | b)?

13

Condition coverage

Condition: a boolean expression that cannot be decomposed
into simpler boolean expressions (atomic)

Condition coverage: every condition in the program must take on all
possible outcomes (true/false) at least once

14

Condition coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

15

Decision coverage

Decision: a boolean expression that is composed of conditions,
using 0 or more logical connectors

Decision coverage: every decision in the program must take on all
possible outcomes (true/false) at least once

16

Decision coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

In the control flow graph,
this is equivalent to edge
coverage

17

There is a concept of “subsumption”

18

Given two coverage metrics A and B,
A subsumes B if and only if satisfying A implies satisfying B

• Subsumption relationships (true or false):
1. Does statement coverage subsume decision coverage?

2. Does decision coverage subsume statement coverage?

3. Does decision coverage subsume condition coverage?

4. Does condition coverage subsume decision coverage?

https://pollev.com/cse403wi

19

20

21

22

23

And the experts say…

24

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

• Subsumption relationships :
1. Statement coverage does not subsume decision coverage
2. Decision coverage subsumes statement coverage
3. Decision coverage does not subsume condition coverage
4. Condition coverage does not subsume decision coverage

Statement does not subsume Decision coverage

Entry
point

a==null ||
a.length==0

sum = 0

i = 0

a.length>MAX

Exceptional
exit

throw new
IllegalArgumentException(

“Something has gone wrong”)

true

true

false

25

false
Test:

a.length = MAX+1

Decision subsumes Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length
return
sum/a.length

Normal
exit

Exceptional
exit

throw new
IllegalArgumentException(

“Array a must not be null or
empty!”)

true

true

false

false

num < 0 sum += numfalse

true
sum -= num

++i

num = a[i]

26

Decision and Condition – neither subsumes the
other

27

4 possible tests for the
decision:

1. a = 0, b = 0

2. a = 0, b = 1

3. a = 1, b = 0

4. a = 1, b = 1

a | bba

000

110

101

111

a | bba

000

110

101

111

These two satisfy
condition coverage

but not decision
coverage

These two satisfy
decision coverage
but not condition

coverage

If (a | b) { …}

How much coverage is enough? 100%?
May be subject to the law of diminishing returns … shoot for 80%

Good resource on code coverage and code coverage tools:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
And a good list of coverage tools:
https://www.browserstack.com/guide/code-coverage-tools 28

Code coverage takeaways

• Code coverage can provide valuable insights into your
code and into your testing adequacy

• It is intuitive to interpret
• There are great tools available to help compute code

coverage of your tests
• Code coverage itself is not sufficient to ensure correctness
• Code coverage is well known and used in industry

29

Next up -

Testing with mutations
You’ll practice this on Friday with an in-class exercise

Mutation
testing

Mutation testing

Program

Mutation testing: mutant generation

Program

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Mutation
testing

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation Mutant

Mutation operators

Mutation testing: mutant generation

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program Mutants

Mutation operators

Mutation testing: mutant generation

Mutants

lhs < rhs lhs <= rhs

lhs < rhs lhs != rhs

stmt no-op

Program

Mutation operators

Tests

Mutation testing: test creation

MutantsProgram

Assumptions
● Mutants are coupled to real faults
● Mutant detection is correlated with real-fault detection

https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf,
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf

Mutation: a concrete example

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutant 1:
public int min(int a, int b) {

return a;
}

38

Mutation: another example

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutant 2:
public int min(int a, int b) {

return b;
}

39

Mutation: yet another example

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutant 3:
public int min(int a, int b) {

return a >= b ? a : b;
}

40

Mutation: last example (I promise)

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutant 4:
public int min(int a, int b) {

return a <= b ? a : b;
}

41

Mutation score

Input: a test suite and a set of mutants
Score: fraction of mutants failing (killed/detected) by the test suite

Example: test suite fails for 3 of the 4 mutants; score = .75

Jargon: to “kill” a mutant is for the test to fail
Why is a test failure good?

42

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

For each mutant, provide a test case that detects it
(i.e., passes on the original program but fails on the mutant)

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

121

111

112

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

1121

1111

2112

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

21121

11111

12112

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

221121

111111

212112

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

1221121

1111111

1212112

M4 cannot be detected (equivalent mutant)

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

1221121

1111111

1212112

Which mutant(s) should we show to a developer?

Mutation testing: let’s practice

Original program:
public int min(int a, int b) {

return a < b ? a : b;
}

Mutants:
M1: return a;
M2: return b;
M3: return a >= b ? a : b;
M4: return a <= b ? a : b;

M4M3M2M1Originalba

1221121

1111111

1212112

Redundant Equivalent

Mutation testing: challenges

M4M3M2M1Originalba

1221121

1111111

1212112

● Redundant mutants (produce same output as another mutant (s))
○ Inflate the mutant detection ratio
○ Hard to assess progress and remaining effort

● Equivalent mutants (produce same output as original program)
○ Max mutant detection ratio != 100%
○ Waste resources

Redundant Equivalent

Productive mutants

A mutant is productive if it is
1. detectable and elicits an effective test or
2. equivalent and advances code quality or knowledge

Productive mutants: mutation testing at
Google

Practical Mutation Testing at Scale: A view from Google (Reading)

Practical Mutation Testing at Scale: A view from Google (Reading)

Productive mutants: mutation testing at
Google

Looking ahead -

Mutation in-class exercise on Friday
Bring laptop, work in partners

Read mutation testing basics beforehand (link on Calendar):
https://courses.cs.washington.edu/courses/cse403/25wi/project/mutation-
basics.html

55

Last topic for today -

Integration testing
Do you get the expected results when the parts are put together?

Start with plain, “integration”
Integration: combining 2 or more software units and getting the
expected results

Why do we care about integration?
• New problems will inevitably surface

• Many modules are now together that have never been together before
• If done poorly, all problems will present themselves at once

• This can be hard to diagnose, debug, fix
• There can be a cascade of interdependencies

• Cannot find and solve problems one-at-a-time

57

What do you think of phased integration

Phased ("big-bang") integration:
• Design, code, test, debug each

class/unit/subsystem separately
• Combine them all
• Hope for the best

58

In contrast to incremental integration

Incremental integration:
• Repeat

• Design, code, test, debug a new component
• Integrate this component with another (a

larger part of the system)
• Test the combination

• Can start with a functional "skeleton"
system (e.g., zero feature release)
• And incrementally “flesh it out”

59

Is it obvious which is more successful?

• Incremental integration benefits:
• Errors easier to isolate, find, fix

• reduces developer bug-fixing load
• System is always in a (relatively) working state

• good for customer, developer morale

• But it isn’t without challenges:
• May need to create "stub" versions of some features that aren’t

yet available

60

Incrementally from the top, bottom or “sandwich"?
“Sandwich" integration by fleshing out a skeleton system

Connect top-level UI with crucial bottom-level components
• Add middle layers incrementally
• More common and agile approach

Milestone 05: Beta

Demo a skeleton
implementation of
your product
showing the main
components are
integrated

61

Integration testing

Integration testing: verifying software quality by testing two or
more dependent software modules as a group

Can be quite challenging as:
• Combined units can fail in more places and in more complicated ways
• May need to use stubs to "rig" behavior if not all pieces yet exist

62

That’s a wrap (for now) – testing takeaways
• Testing matters!!!

• Test early, test often
• Bugs become well-hidden beyond the unit in which they occur

• Don't confuse volume with quality of test data
• Can lose relevant cases in mass of irrelevant ones
• Look for revealing subdomains (“characteristic tests”)

• Choose test data to cover:
• Specification (black box testing)
• Code (white box testing)

• Testing can't generally prove absence of bugs
• But it can increase quality and confidence

63

Additional reference material

64

What’s a stub?

Stub: a controllable replacement for a software unit

• Useful for simulating difficult-to-control elements, e.g.,
• network / internet
• database
• files

• Useful for simulating components not yet developed

Stub it in
Stub it out

65

How to create a stub, step 1
1. Identify the dependency

a) This is either a resource or a class/object that is challenging or not
yet written

b) If it isn't an object, wrap it up into one

Goal: Test class A

Create Class B to
represent the
challenging/missing
dependency (as needed)

Class A depends on
Class B

66

How to create a stub, step 2
2. Extract the core functionality of the object

into an interface

Create a stub InterfaceB based on B

Update A's code to work with type
InterfaceB, not B

B
interface
object

Original
B

67

Create a stub, step 3
3. Write a second "stub" class that also

implements the interface,
but returns pre-determined fake data

Now A's dependency on B
is dodged and can be
tested easily

Can focus on how well A
integrates with B's
expected behavior

Stub

B
interface
object

68

Inject the stub, step 4

So cool! Where inject the stub in the code so Class A will reference it?
• At construction

apple = new A(new StubB());

• Through a getter/setter method
apple.setResource(new StubB());

• Just before usage, as a parameter
apple.methodThatUsesB(new StubB());

Think about how to minimize code changes when you no longer
depend on the stub

69

There are different ways to approach integration

Top-down integration:

Start with outer UI layers and work inward
• Must write (lots of) lower level stubs for UI to interact with
• Allows postponing tough design/implementation decisions (
• bad?)

Steve McConnel, Code Complete 270

Or bottom-up

Bottom-up integration:

Start with low-level data/logic layers and work outward
• Must write upper level stubs to drive these layers
• Won't discover high-level / UI design flaws until late

71

Evaluating a test suite: maximize a metric
Input: a test suite and something else
Output: a measurement of the something else

Something else:
● Lines of code executed = code coverage
● Conditions evaluated to true and/or false = branch coverage
● …
● Mutation score

72

