
Software testing
CSE 403 Software Engineering
Winter 2025

Today’s outline

Software testing
• Motivating examples
• Categories of tests
• Unit testing

Teammate survey – see Ed Chat for your link - due by Monday 11:59pm

2

3

Could better testing have helped …

Therac-25 radiation therapy machine (1985-87)

• Device to create high energy beams to destroy tumors with
minimal impact on surrounding healthy tissue

• Caused excessive radiation in some situations
• What happened?

– An update removed hardware interlocks that prevented the
electron-beam from operating in its high-energy mode.
So all the safety checks were done in the software.

– The software set a flag variable by incrementing it.
Occasionally an arithmetic overflow occurred, causing the
software to bypass safety checks.

– The equipment control task did not properly synchronize
with the operator interface task, so that race conditions
occurred if the operator changed the setup too quickly.

– And more …
Therac-25 - Wikipedia

Cost of bugs: (at least)
death in 6 patients

Boeing 787
Dreamliner (2015)

7

• The bug occurs when the
software 32-bit counter
overflows

• This happens if the generator
control units are on for 248 days
continuously

• Impact – the plane would lose
all electrical power, even if in
flight

• Bug was found (fortunately!)
before it was triggered in service

https://www.theguardian.com/

WannaCry Ransomware Attack (2017)

• Cryptoworm infected computers, encrypting their
data, and demanding ransom payments

• Estimated to have affected more than 200,000
computers across 150 countries

• What happened?
• WannaCry exploited a bug in the Server Message

Block (SMB) protocol
• MSFT provided a security-patch earlier but many

customers hadn’t installed it yet

WannaCry ransomware attack - Wikipedia

Cost of exploit:
100s of
millions to
billions of $

NHS - 70,000
hospital
devices were
impacted

CrowdStrike (2024)

• “Routine” update by CrowdStrike
crashed Windows devices

• CrowdStrike is security endpoint
protection software

• Update expected 20 input fields
but provided 21, resulting in an
out-of-bounds read

• Lack of testing across diverse
environments before deployment

• Affected 8.5 million globally,
across banking, healthcare,
airlines and more

9

Cost of exploit:
over $5 billion

https://www.techtarget.com/

10

It’s important – at times, critically
important - to release quality software

Examples showed particularly costly errors
but every error adds up

Many of the most common and impactful
bugs can be caught with testing

11

Which was the top most dangerous (severe
and prevalent) software weakness in 2024?

• Integer overflow
• SQL injection
• Cross-site scripting
• Null pointer dereference
• Out-of-bounds read
• Out-of-bounds write

SQL injection

Assume this code:
String query =
"select from table where user='" + username + "'";

If the user enters “alverson”, the value of query is:
"select from table where user='alverson'"

12

SQL injection

Assume this code:
String query =
"select from table where user='" + username + "'";

If the user enters “alverson”, the value of query is:
"select from table where user='alverson'"

What if a user enters, as their username: ' or ''='
The value of query is:

13

SQL injection

Assume this code:
String query =
"select from table where user='" + username + "'";

If the user enters “alverson”, the value of query is:
"select from table where user=‘alverson'"

What if a user enters, as their username: ' or ''='
The value of query is:

"select from table where user='' or ''=''"

14

Cross-site scripting

15

Malicious
Actor

Website1. Malicious actor discovers a website
with a vulnerability that enables a
script to be injected

2. Malicious actor injects script that
steals website user’s info (like
session cookies)

Cross-site scripting

16

Malicious
Actor

User

Website1. Malicious actor discovers a website
with a vulnerability that enables a
script to be injected

2. Malicious actor injects script that
steals website user’s info (like
session cookies)

3. Each time a user visits the website,
the script is activated

4. User’s session cookies are sent to
malicious actor , who can now
access any user account info (like
credit card info)

17

18

19

So let’s test! Four categories of testing

1. Unit Testing
• Does each module do what it is supposed to do in isolation?

2. Integration Testing
• Do you get the expected results when the parts are put together?

3. Validation Testing
• Does the program satisfy the requirements?

4. System Testing
• Does the program work as a whole and within the overall

environment? (includes full integration, performance, scale, etc.)

21

Testing vs. debugging

Testing: is there a bug?
Debugging: where is the bug? how to fix the bug?

23

Regression testing

• Whenever you find a bug
• Store the input that triggered that bug, plus the correct output
• Add these to the test suite
• Verify that the test suite fails
• Fix the bug
• Verify the fix

• Ensures that your fix solves the problem
• Protects against updates that reintroduce bug

• It happened at least once, and it might will happen again

Fool me once, shame on you
Fool me twice, shame on me

Proverb stemming back to 1600’s

24

Today’s outline

Software testing
• Motivating examples
• Categories of tests
• Unit testing

• Black box testing
• Boundary case testing
• Test driven development

• White box testing
• Static code analysis
• Code coverage testing

26

Unit Testing
Test that a

method/class/module
behaves as specified

Unit testing

• A unit is the smallest testable part of the software system
(e.g., a method in a Java class)

• Goal: Verify that each software unit performs as specified
• Focus:

• Individual units (not the interactions between units)
• Usually input/output relationships

27

Testing best practices: motivating example
public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {
sum -= d;

} else {
sum += d;

} }

return sum/numbers.length;
}

Average of the absolute values of an array of doubles

What tests should we write for this method? 28

Starting at the top

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code

Examines the module/system internals
Trace data flow directly

Bug report contains more detail on source of defect
30

Black-box testing

• Black-box is based on requirements and functionality, not
code

• Tester may have actually seen the code before ("gray box")
• But doesn't look at it while constructing the tests

• Often done from the end user or client's perspective

• Emphasis on parameters, inputs/outputs (and their validity)

31

How do you know when you are done?

You have tested all the behaviors, according to the specification?

How do you know when you have tested all the behaviors?

What if the behavior differs from the specification?

32

Approach:
• Build tests according to the text of the specification

• “cover” the specification
• Educated guess about what errors the programmer might have made

• Add more tests based on these guesses/heuristics

Black box: boundary case testing

Boundary case testing:

• What: test edge conditions

• Why?
• #2 and #6 2024 Most Dangerous Software Weakness!
• Likely source of programmer errors (< vs. <=, etc.)
• Requirement specs may be fuzzy about behavior on boundaries
• Often uncovers internal hidden limits in code

• Example: array list must resize its internal array when it fills capacity

33

Black box: boundary case example #1

• Write test cases based on paths through the specification

• int find(int[] a, int value) throws Missing
// returns: the smallest i such that a[i] == value
// throws: Missing if value not in a[]

• Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

• Have we captured all the paths?
([4, 5, 5], 5) => 1

34

Boundary case #2

<E> void appendList(List<E> src, List<E> dest) {

// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case?

35

Theory explains why boundary testing works
• Divide the input into subdomains

• A subdomain is a subset of possible inputs
• Identify input sets with same behavior
• Try one input from each set

• “Same” behavior depends on specification
• A program has the “same behavior” on two inputs if it:

1) gives correct result on both, or
2) gives incorrect result on both

• “Same behavior” is unknowable
• A subdomain is revealing for an error, E, if each test input fails (misbehaves)

If the program has an error, it is revealed by a test in its revealing
subdomain 40

What if you mis-drew the boundaries?

41

Boundary case testing heuristic
• Create tests at the boundaries of subdomains

• Catches common boundary case bugs:
• Arithmetic

• Smallest/largest values
• Zero

• Objects
• Null
• Circular
• Same object passed to multiple arguments (aliasing)

42

Black box: test driven development

Write
test

Write
code to

pass test

Refactor
code

44

Test driven development (TDD):

• What:
• Test based on the spec and developed before the

code is written
• Will fail initially
• Write just enough code to make it pass!

• Why?

Black box: test driven development

Test driven development (TDD):
• What:

• Test based on the spec and developed before the
code is written

• Will fail initially
• Write just enough code to make it pass!

• Why?
• Significantly less defect rate
• Improved understanding of requirements and ability

to influence design
• Not influenced by implementation choices

Write
test

Write
code to

pass test

Refactor
code

45

Let’s try it out with this avgAbs spec

TDD – what tests need to pass in order for us to sign off on the coding?

46

double avgAbs(double ... numbers)
// Average of the absolute values of an array of doubles

• assertEquals(2.0, avgAbs({1.0, 2.0, 3.0}));
• assertEquals(2.0, avgAbs({1.0, -2.0, 3.0}));
• assertEquals(2.0, avgAbs({2.0}));
• …

Let’s try it out with this date spec

TDD – what tests need to pass in order for us to sign off on the coding?
TDD can result in a lot of tests!
• Develop tests now (TDD) or later – need to be judicious in which to write

47

class Date
• Date(int yyyy, int mm, int dd)

// Creates date dd/mm/yyyy
• boolean after(Date date1, Date date2)

// Tests if date1 is after date2
• Date subtractWeeks(Date date1, int numWks)

// Subtracts numWks from date1

Moving on to white box testing

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code

Examines the module/system internals
Trace data flow directly

Bug report contains more detail on source of defect
48

White (clear, glass) box testing
• Ultimate goal:

Test suite covers (executes) all of the program
Question: what does “all of the program” mean?

• Assumption:
Test more behaviors => better test suite quality

• Benefit: tests features not described by specification
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

Static code analysis is
one type of white-box

testing
(see “build” lecture)

Test suite code
coverage is another

(coming Monday)

49

A motivating example for white box testing

boolean[] primeTable = new boolean[CACHE_SIZE];
boolean isPrime(int x) {

if (x>CACHE_SIZE) {
for (int i=2; i<x/2; i++) {

if (x%i==0) return false;
}
return true;

} else {
return primeTable[x];

}
}

Consider an important transition around x = CACHE_SIZE
50

White box testing has advantages
• Greater confidence in code quality

• Correlating to greater amount of code covered by tests
• If tests cover all of the code in the program, are you confident it’s error free?

• Insight into test cases
• Which tests are likely to yield new information (and should be written)

• Can surface an important class of boundaries
• Consider CACHE_SIZE
• Need to check numbers on each side of CACHE_SIZE

• CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1
• If CACHE_SIZE is mutable, we may need to test with different CACHE_SIZE’s

51

White box testing has disadvantages
• Focus on the code: miss incompatibilities with spec
• Focus on the algorithm: miss alternate implementations
• Groupthink: think like the coder

52

White (clear, glass) box testing
• Ultimate goal:

Test suite covers (executes) all of the program
Question: what does “all of the program”
mean?

• Assumption:
Test more behaviors => better test suite quality

• Benefit: tests features not described by specification
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

Ultimate goal:
Maximize a

measurement
of the test suite

53

• Every line of code
• Every then and else

clause
• Every CMP

instruction in the
binary

• Every input

Code coverage testing: examines what fraction of the code under
test is reached by existing unit tests

• Statement coverage - tries to reach every line (practical?)

• Branch coverage - follow every distinct branch through code

• Condition coverage - every condition that leads to a branch

• Function coverage - treat every behavior / end goal separately

Dead code? A distraction? Or important?
55

So, code coverage testing

Consider tests to cover all paths for a Date class

56

Date::
isValidDate()

Consider tests to cover all paths for a Date class

57

Try using a code
coverage tool as
part of your
project testing

Date::
isValidDate()

Ending today with some Rules of Testing

• First rule of testing: do it early and do it often
Best to catch bugs soon, before they have a chance to hide
Automate, automate, automate the process

• Second rule of testing: be systematic
If you randomly thrash, bugs will hide until you're gone
Writing tests is a good way to understand the spec

Think about revealing domains and boundary cases
If the spec is confusing, write more tests

Spec can be buggy too
If you find incorrect, incomplete, ambiguous, and missing corner cases, fix it!

When you find a bug, fix it + write a regression test for it

58

