Build systems & continuous

integration and deployment

CSE 403 Software Engineering
Winter 2025

Course overview: schedule

Important: See Calendar and Canvas for current details of topics and assignments

Week
Software , Continuous Advanced: Intellectual
Topics Dev Requirements ':chléeec;;f development, testing, property, Al, UX,
Lifecycles and integration testing, design
Major Testing
!’ro;ect Proposal Require Arch and & Beta Final
Milestones P ments Design Continuo Release Release
(9 total) us

Surveys and
in-class
activities
(throughout)

)
[.
)
L
Q
®
o)
=

Today's outline

* Build systems
* Continuous integration and deployment systems

What are these

How do they relate

Best practices

|deas to explore for your projects

Have a question for Zach Sperske (industry speaker from Affirm, Inc., next Wed)?
Question link on Calendar and in Ed.

What does a developer do?

The code iIs written ... now what?
« Get the source code

 Install dependencies

« Run static analysis

« Compile the code

« Generate documentation

« Run tests

« Create artifacts for customers

« Ship!

« Operate, monitor, repeat

What does a developer do?

The code is written ... now what?

« Get the source code
 Install dependencies

Which of these tasks should

« Run static analysis
be handled manually?

« Compile the code

« Generate documentation

« Run tests

« Create artifacts for customers
« Ship!

« Operate, monitor, repeat

What does a developer do?

The code is written ... now what?

Which of these tasks should
be handled manually?

NONE!

« Operate, monitor, repeat

Instead, orchestrate with a tool

Build system: a tool for automating compilation and related tasks

* Isa component of a continuous integration/deployment system as today
we automate more than just the build step of producing shippable software

Get the source code
Install dependencies “ |

Run static analysis

Compile the code

Generate documentation
Run tests

Create artifacts for customers

3)4 *w

Operate, Monitor, Repeat

Cl

AN NN NN NN

Instead, orchestrate with a tool

Build system: a tool for automating compilation and related tasks

* Isa component of a continuous integration/deployment system as today
we automate more than just the build step of producing shippable software

These are all tasks!

Get the source code
Install dependencies “ |

Run static analysis

Compile the code

Generate documentation
Run tests

Create artifacts for customers

3)4 *w

Operate, Monitor, Repeat

Cl

AN NN NN NN

Even build system tasks are code

e Should be tested
e Should be code-reviewed
e Should be checked into version control

Adding to our software engineering best
practices list

- Automate, automate, automate everything!
- Always use a build tool (one-step build) ©

Use a continuous integration tool to build and test
your code on every commit

Don’t depend on anything that's not in the build file
Don't break the build!

10

A good build system is valuable to us

1. Dependency management

1.

Identifies dependencies between files (including externals)

2. Runs the compiles in the right order to pick up the right dependencies
3. Only runs the compiles needed due to dependency changes

2. Efficiency and reliability

1.

Automates the build process so that new and old team members, even
working in different dev environments, can move quickly from
development to shipping code

Eliminates the chance of missing steps due to tribal knowledge and/or
simply errors

11

A build system has three main roles

1. Defines tasks (and external resources, such as libraries)
2. Defines dependencies among tasks (a graph)
3. Executes the tasks

12

Here is a simple example code illustrating
dependency management

% ls src/
Lib.java
LibTest. java
Main.java
SystemTest. java

Build systems: identify dependencies
between tasks

compile
Lib
% 1s src/ What are the
Lib.java dependencies
between these

LibTest. java
Main.java tasks?

SystemTest.Jjava And why do | care?
compile
Main

Build systems: identify dependencies
between tasks

Build systems: identify dependencies
between tasks

Build systems: identify dependencies
between tasks

compile
Lib

Tip: look for tasks
with no
dependencies and
run those first

In what order
should we run
these tasks?

compile
Main

17

Build systems can determine task order

Large projects have thousands of tasks
* Dependencies between tasks form a directed acyclic graph

* Build tools use a topological sort to create an order to compiles

Order nodes such that all dependencies are satisfied

Implemented by computing indegree (number of incoming edges) for each node
No dependencies go first and open door to the others

See Appendix for example

External code (libraries) also can be complex
« Build systems can manage these dependencies as well!

A build system has three main roles

1. Defines tasks (and external resources, such as libraries)
2. Defines dependencies among tasks (a graph)
3. Executes the tasks

Consider a task for automated testing before the compile step, such
as static analysis

19

Static analysis

Run before the compile step

Examples:
* Credential scan
e Date scan
* Personal data scan
« Sensitive data scan

What might be
others?

Is this
worthwhile?

20

Build systems: opportunity for static analysis

& C & github.com/Yelp/detect-secrets

‘= README.md

(") detect-secrets-ci failing | pypi package '1.4.0 | homebrew 1.4.0 | PRs

detect-secrets ¢

About @

detect-secrets is an aptly named module for (surprise, surprise) detecting
secrets within a code base.

However, unlike other similar packages that solely focus on finding secrets, this

package is designed with the enterprise client in mind: providing a backwards
compatible, systematic means of:

1. Preventing new secrets from entering the code base,
2. Detecting if such preventions are explicitly bypassed, and

3. Providing a checklist of secrets to roll, and migrate off to a more secure
storage.

Could these types of static
analysis tools be run earlier than
build?

& C @ github.com/bearer/bearer

‘= README.md

& bearer

Scan your source code against top security and privacy risks.

Bearer CLl is a static application security testing (SAST) tool that scans your source
code and analyzes your data flows to discover, filter and prioritize security and
privacy risks.

21

ere’'s an example build system ‘input’

Basic-Stats
“ant” Simple-C
build.xml “make”
Makefile

(from last week’s in-class
exercise)

22

Many
other
options!

Over to
you to
research

JAVA+

PYTHON

JAVASCRIPT

Milestone 04: Research, evaluate and

choose a build system for your project

gradle

bazel

hatch

poetry

tox

npm

webpack

gulp

Open-source successor to ant and maven
Open-source version of Google’s internal build tool (blaze)

Implements standards from the Python standard (uses
TOML files, has PIP integration)

Packaging and dependence manager
Automate and standardize testing

Standard package/task manager for Node, "Largest
software registry in the world."

Module bundler for modern JavaScript applications
Tries to improve dependency and packing

23

Today's outline

 Build systems
« Continuous integration and delivery/deployment systems

What are these and

How do they relate

Best practices

Ideas to explore for your projects

24

Cl/CD: What's the difference?

Continuous Integration (Cl)

Devs regularly integrate code into a shared repository
System builds/tests automatically with each update
Complements local developer workflows (e.g., may run diff tests)

Goal: to find/address bugs quicker, improve quality, reduce time to
get to working code

Continuous Deployment (CD) [Continuous Delivery]

Builds on top of Cl

Automatically pushes changes to [staging environment and then]
production

Goal: always have a deployment-ready build that has passed
through a standardized testing process

Milestone 04: Research, evaluate and choose a
continuous integration system for your project

" 'g

Cod:l\i\ilpseline Azu re Pipelines

o
o u Bitbucket Pipelines

G | tl_ 3 b circleci

Travis ClI

26

Continuous Iintegration basics

« A Cl workflow is triggered when an event occurs in your [shared] repo
« Example events
* Push
 Pull request
* Issue creation

« A workflow contains jobs that run in a defined order Using GitHub
* Ajob s like a shell-script and can have multiple steps Cl terminology
e Jobs run in their own vm/container called a runner but concepts
« Example jobs span other ClI
 Run static analysis systems

« Compile, test
» Deploy to test, deploy to prod

27

Cl basics (w/ GitHub Cl)

What SW architecture
is this using?

m

Job 1 Job 2
Step 1: Run action Step 1: Run action
Step 2: Run script Step 2: Run script
Step 3: Run script Step 3: Run script

Actions are common

github tasks — leverage Step 4: Run action
those built-in or created/

by others (e.g., checkout)

28

Unit tests are triggered

Example: Cl with Github actions on every push of new

jobs:

test:
runs-on: ubuntu-latest

steps:

uses:
name:
uses:
with:
name:
uses:
with:
name:

run:

name:

run:

name:

run:

name: CI - UnitTesting
on: [push]

strategy: <2 keys>

actions/checkout@v3

Set up Python ${{ matrix.python-version }}
actions/setup-python@v3

<1 key>

Set up MongoDB ${{ matrix.mongodb-version }}
supercharge/mongodb-github-action@l.8.0

<1 key>

Install dependencies
python3 -..tall hatch

Pre-fly setup
cp $GITHU..GITHUB_ENV

Test with hatch

|

hatch run test:test

code

Workflow name
Trigger

Linux OS environment

Code reuse with
established “actions”

One command to run test suite 29

Let's look at a Cl workflow from the
MC-Quest CSE 403 project

= o mc-quest / mc-quest & Q Type (/] to search 8 -~ + -

<> Code () Issues 1 I9 Pull requests 5 ® Actions f Projects @ Security |~ Insights

[] Files mc-quest / .github/ [
Connor's
tea ,S L N Q r connorrein Update issue templates (#31) 2a801d1- 2
Q Gotofile t
re p O Name Last commit message
v .github
> ISSUE_TEMPLATE
> workflows ISSUE_TEMPLATE Update issue templates (#31)
? wore workflows Feature: C| (#15)
> gradle
> reports
> B scripts
> server

M Aitinnare

Continuous

Continuous integration

delivery/deployment basics

Why would you not
always automatically

deploy? 1
Approve deploy 9
Continuous delivery
Auto deploy o

Continuous deployment

> @ @ AUTOMATED >@ >@

@ @ AUTOMATED

Version control
Commit changes

Amazon example

Build Staging Production
Build and unit tests Deploy to test env Deploy to prod
Integration tests, load tests, etc. Monitor
\ J

Staging before Production is
very typical of industry
practices

31

Example: continuous deployment with
GitHub Pages (https://pages.github.com/)

&« > C & https://nigini.github.io/SWEng/ G

./ SWEng

Content R—
updates trigger

publishing the Introduction to SW Engineeting
website update

This material is heavily inspired by (and sometimes copied with permission from) the U

e by René Just.

lectures if you practice the discussed concepts and principleds. There is a catch: the project is a
vehicle, not the outcome. Your ability to deal with the tools and techniques created throughout the
history of Software Engineering is the place you should pay attention to.

WHAT?

Let’s get this out of the way: what is Software Engineering?

1. A more formal way to see it: “an engineering discipline (hence, uses science to improve
applicability and efficiency) that is concerned with all aspects of software production.” — Ian
Sommerville

. The way we will kind of see it here: a set of principles to design, develop, maintain, test, and
evaluate computer software.

. Also: A whole research field that study what such principles are and what tools can support to
deliver better software.

Example: continuous deployment config

& nigini/ SWEng Pubiic

<> Code (%) Issues 4 i1 Pullrequests 9

i3 General

Access
Ay Collaborators

) Moderation options

Code and automation
¥ Branches

© Tags

£} Rules

() Actions

& Webhooks
Environments

%
I =] Pages

(® Actions [J Projects [0 Wiki () Security |~ Insights| 3 Settings

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages frc

Your site is live at https:/nigini.github.io/SWEng/
Last deployed by @ nigini 2 days ago

Build and deployment

Source

Deploy from a branch ~

Branch
Your GitHub Pages site is currently being built from the main branch. Learn more.

¥ main ~ B / (root) ~ Save

Learn how to add a Jekyll theme to your site.

33

Example: continuous deployment config

2 nigini/ SWEng Pubic

<> Code (%) Issues 4 11 Pullrequests 9 () Actions | [Projects [0 Wiki () Security |~ Insights 3 Settings

@ pages build and deployment #52

I (n) Summary

(\ Triggered via dynamic 2 days ago Status Total duration Artifacts
e & nigini -o- 4169aa2 Success 52s 1
@ build / \
@ report-bulld-status pages-build-deployment
° deploy on: dynamic
Run details
(9 Usage @ build 24s @ report-build-status 2s
@ deploy 7s

\ https://nigini.github.io/SWEng/ j
34

Summary of best practices for build and
continuous integration

Automate, automate, automate

everything!
Always use a build tool (one-step » |
build) %

CD

Cl
Use a Cl tool to build and test your ‘
code on every commit glly’ w
Don’'t depend on anything that's
not in the build file

Don’t break the build!

35

Appendix - Topological sort example

Build systems: topological sort

compile
Lib

compile
Main

What's the indegree of each node?

37

Build systems: topological sort

compile
Lib

compile
Main

Build systems: topological sort

compile
Lib

compile
Main

Build systems: topological sort

9 0
compile
Lib

(%)
compile
Main

40

Build systems: topological sort

9 0
compile
Lib
(%)
compile
Main

41

Build systems: topological sort

9 0
compile
Lib
(%)
compile
Main

42

Build systems: topological sort

Valid sorts:

compile
Lib

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test
compile
Which is preferable? Main

Let's try writing our own simple Cl workflow

Follow along at:
https://github.com/alv880/UW-CSE403-Alv-Projects

Github Actions resource:

https://docs.qgithub.com/en/actions/learn-github-actions/understanding-
github-actions

44

Example: Cl at work in CSE

(& @) https://www.labinthewild.org o &8 A W% o o= R t
La b I n The WI | d Our Experiments Findings & Data Sets Blog For Researchers About Us English ~
Is a research 1,137
prOjeCt d raWing i LA B IN T H E WH_D ast participants from Australia
month

survey input
from diverse

QO o .
Nigini Oliveira N TR &=
h What is your decision-making style? What's your personality? Can you tell the nutritional content of
UW researcher a plate?
r OVI d e d th i S You are making decisions every day. Have you You will learn about the five main traits of your Take this study to see if you can accurately tell
p wondered what kind of decision-making styles personality and how you score on them. We the nutritional content of a plate. See if you are
I you have? Take our test and you will learn will also try to establish the relationship more accurate than the average! An Al
exa m p e more about it! between personality and physical activity assistant will help you along the way.
goals.
Participate now! Participate now! Participate now!

S e

Example: Cl with Github actions

(' Search or jump to... Pull requests Issues Codespaces Marketplace Explore

& labinthewild / LITW-API Private ¢z EditPins ~ @Unwatch 2 ~

<> Code () Issues 3 I Pulirequests 1] () Actions [Projects 1 @) Security [~ Insights 83 Settings

< CI - UnitTesting
@ Cl Tests run only on push for now. PL + Push was duplicating runs. #15

l (A) Summary

Triggered via push 1 minute ago Status Total duration Arti
Jobs @ nigini pushed -o Oeafd05 ci_tests Success 1m 26s -
@ test (3.11,6.0)
Run details ci-test.yml

on: push
5 Usage

Matrix: test

&Y Workflow file

@ 1 job completed

Show all jobs

