
Software Design
CSE 403 Software Engineering
Winter 2025

Project requirements and planning tips

Celebrate your brand – use your product name as a title in your doc
Ensure the beta release milestone is in your schedule

Plan for continuous testing (and continuous delivery after beta)

Today’s Outline

1. Quick recap – Architecture vs Design
2. Some practical design considerations
3. Class quiz on coding styles in PollEv 

Readings are posted on the Calendar

See also Appendix for a short primer on design material
• Visualizing your design with UML (unified modeling language)
• Design principles
• Design patterns

2

Weekly status reports are underway

Due in github each
Wednesday
11:59pm

Include an agenda
for Thurs project
meeting and any
questions for staff

Details on “Project”
tab of class website

3

High level overview from last class

Requirements
Architecture
Design
Source code

D
evelopm

ent process
Le

ve
l o

f a
bs

tr
ac

tio
n

4

The level of abstraction is key

• With both architecture and design,
we’re building an abstract
representation of reality

• Architecture - what components
are needed, and what are their
connections

• Design - how the components
themselves are developed

View Controller

Model

Client uses

manipulatesupdates

sees

5

Let’s look at the SOLID design principles
• The Single-responsibility principle: "There should never be more than one reason

for a class to change." In other words, every class should have only one
responsibility.

• The Open–closed principle: "Software entities should be open for extension, but
closed for modification.“

• The Liskov substitution principle: “References to base classes must be able to use
objects of derived classes without knowing it.“

• The Interface segregation principle: "Clients should not be forced to depend upon
(implement) interfaces that they do not use.“

• The Dependency inversion principle: "Depend upon abstractions, [not] concretes."

Learn more: https://en.wikipedia.org/wiki/SOLID 6

There are other tried-and-true principles

• KISS principle (keep it simple, stupid)
• YAGNI principle (you ain’t gonna need it)
• DRY principle (don’t repeat yourself)
• Single responsibility (focus on on doing one thing well – high cohesion)
• Open/closed principle (open for extension, closed for modification)
• Liskov substitution principle (user of base class can use instance of derived)
• Interface segregation principle (don’t force client to implement an interface if they

don’t need it)
• High cohension, loose coupling principle (path to design success)

Learn more: Geeks for Geeks Design Principles

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose

Coherence
Each concept should be motivated by at most one purpose

Fulfillment
Each purpose should motivate at least one concept

Non-division
Each purpose should motivate at most one concept

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose

8

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept

Non-division
Each purpose should motivate at most one concept

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

9

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose

10

Design principles and properties …check

How about good patterns to learn and model
from

11

Design patterns

• Tried and true solutions to commonly occurring problems in
software design

• Models / blueprints that you can leverage or customize to solve
design problems in your code

• Address recurring, common design problems and provide
generalizable solutions – models – that you can customize

• Provide a common terminology for developers

• Creational, structural and behavioral patterns
12

Creational design patterns
• Focus on the process of object creation and problems/complexity

related to object creation
• Help in making a system independent of how its objects are created,

composed and represented

• Example: Simple Factory pattern

• Scenario: want to hide all the instantiation logic from the client

• Simple Factory pattern: provides a clean way to generate an instance for a
client without exposing instantiation logic to the client

13

14

interface Door {
public function getWidth(): float;
public function getHeight(): float;

}

class WoodenDoor implements Door {
protected $width;
protected $height;

public function _construct(float $width,
float $height){

$this->width = $width;
$this->height = $height;
}

public function getWidth(): float {
return $this->width;
}

public function getHeight(): float {
return $this->height;

}

class DoorFactory {

public static function makeDoor($width, $height): Door
{

return new WoodenDoor($width, $height);
}

}

$door1 = DoorFactory::makeDoor(100, 200);

$door2 = DoorFactory::makeDoor(50, 100);

Example from:
https://github.com/kamranahmedse/design-patterns-for-humans

Structural design patterns
• Solve problems related to how classes and objects are composed

to form larger structures that are efficient and flexible
• Often use inheritance to compose interfaces or implementations

• Example: Fascade pattern

• English definition: an outward appearance that is maintained to conceal a
less pleasant reality

• Scenario: provide a simple interface to a complex subsystem

• Fascade pattern: a facade is an object that provides a simplified interface
to a larger body of code

15

16

class Computer {
public function getElectricShock() {..}
public function makeSound() {..}
public function showLoadingScreen() {..}
public function bam() {..}
public function closeEverything() {..}
public function sooth() {..}
public function pullCurrent() {..}

}

class ComputerFacade {
protected $computer;

public function __construct (Computer $computer) {
$this->computer = $computer;

}
public function turnOn() {

$this->computer->getElectricShock();
$this-computer->makeSound();
$this->computer->showLoadingScreen();
$this->computer->bam();

}
public function turnOff() {

$this->compute->closeEverything();
$this->computer->pullCurrent();
$this->computer->sooth():

}
$computer = new ComputerFacade (new Computer());
$computer->turnOn();
$computer->turnOff()

Example from:
https://github.com/kamranahmedse/design-patterns-for-humans

Behavioral design patterns
● Solve problems related to responsibilities and communication

between objects
● Describe not just patterns of objects or classes but also the

patterns of communication between them
● Identify common communication patterns between objects

and realize these patterns

● Example: Mediator pattern
○ Scenario: want to minimize/avoid direct complex dependencies

between objects (strive for loose coupling), and/or have
centralized coordination

17

18

interface Airplane {
void requestTakeoff();
void requestLanding();
void notifyAirTrafficControl(String message);

}

class CommercialAirplane implements Airplane {
private AirTrafficControlTower mediator;

public CommercialAirplane(AirTrafficControlTower
mediator) {
this.mediator = mediator;

}
public void requestTakeoff() {

mediator.requestTakeoff (this);
}
…

}

interface AirTrafficControlTower { // Mediator
void requestTakeoff(Airplane airplane);
void requestLanding(Airplane airplane);

}

class AirportControlTower implements AirTrafficControlTower {
public void requestTakeoff(Airplane airplane) {
//
// Complex logic for coordinating takeoff
//
airplane.notifyAirTrafficControl("Requesting takeoff

clearance.");
}
…

}

Example from:
https://www.geeksforgeeks.org/mediator-design-pattern/

AirTrafficControlTower controlTower = new AirportControlTower();
Airplane airplane1 = new CommercialAirplane(controlTower);
Airplane airplane2 = new CommercialAirplane(controlTower);
airplane1.requestTakeoff();
airplane2.requestLanding();

Like most things, design patterns have
pros and cons

Pros
• Provide a common language for developers (including interviewing)
• Can improve communication and documentation
• “Toolbox” for devs to leverage known solutions to a known problems

(don’t reinvent the wheel)

Cons
• Can get swept into thinking a pattern fits when it does not
• Or using one when there is a better – built in – solution in the

language or dev toolkit that you’re using
• Can add complexity when it’s not needed

19

Some good design patterns references

● https://github.com/kamranahmedse/design-patterns-for-
humans < nice overview with examples

● https://www.patterns.dev < Java, React, Next.js, Vue.js
examples

● https://refactoring.guru/design-patterns/catalog < some
motivating examples

● https://www.geeksforgeeks.org/software-design-patterns/ <
tutorial like with examples

20

Let’s look at code
and
assess its style

Many thanks to René Just, UW CSE Prof

21

Quiz setup
• Work in small groups of neighboring students
• Individually register your answer in PollEv
• 6 code snippets

• Round 1 (PollEv)
• For each code snippet, decide if it represents good or bad practice
• Discuss and reach consensus on good or bad practice and why

• Round 2 (Poll results and class discussion)
• For each code snippet, share opinions on why it is good or bad practice
• Goal: common understanding of good styles and alternatives to bad ones

22

https: //PollEv.com /cse403wi

Round 1: good or bad?

23

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
if (dir == null || !dir.exists() || dir.isEmpty()) {

return null;
} else {

int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

24

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {

if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

}

25

Snippet 3: good or bad?
public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {
case DEBIT:

… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

26

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

27

Snippet 5: good or bad?

public class ArrayList<E> {
public E remove(int index) {

…
}
public boolean remove(Object o) {

…
}
…

}

28

Snippet 6: good or bad?

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}
29

Round 1: good or bad?
and Round 2: why?

30

31

Snippet 1: good or bad?
public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

And the survey says …
33

34

Snippet 1: this is bad! why?
public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

35

Snippet 1: this is bad! why?
public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

Null references...the billion dollar mistake.

36

Null references...the billion dollar mistake.

Tony Hoare

• Programming languages
• Concurrent

programming
• Quicksort

37

Snippet 1: this is bad! why?
public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

File[] files = getAllLogs();
for (File f : files) {

…
}

Don’t return null; return an empty array instead.
38

Snippet 1: this is bad! why?
public File[] getAllLogs(Directory dir) {

if (dir == null || !dir.exists() || dir.isEmpty()) {
return null;

} else {
int numLogs = … // determine number of log files
File[] allLogs = new File[numLogs];
for (int i=0; i<numLogs; ++i) {

allLogs[i] = … // populate the array
}
return allLogs;

}
}

No diagnostic information.

39

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {

if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

}

And the survey says …
40

41

Snippet 2: short but bad! why?

public void addStudent(Student student, String
course) {

if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

}

42

public void addStudent(Student student, String
course) {

if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

}

Snippet 2: short but bad! why?

Use constants and enums to avoid literal duplication.

43

Snippet 2: short but bad! why?

public void addStudent(Student student, String
course) {

if (course.equals("CSE403")) {
cse403Students.add(student);

}
allStudents.add(student)

}

Consider always returning a success/failure value.

44

Snippet 3: good or bad?
public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

And the survey says …
45

46

Snippet 3: this is good, but why?
public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

47

Snippet 3: this is good, but why?
public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
switch (payType) {

case DEBIT:
… // process debit card
break;

case CREDIT:
… // process credit card
break;

default:
throw new IllegalArgumentException("Unexpected payment type");

}
}

Type safety using an enum; throws an exception for unexpected
cases (e.g., future extensions of PaymentType).

48

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

And the survey says …
49

50

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

51

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
if (x<0) {

x = -x;
}
if (y<0) {

y = -y;
}
return Math.max(x, y);

}

Method parameters should be final (sacred);
use local variables to sanitize inputs.

Consider if these are
pass by reference…

52

Snippet 5: good or bad?

public class ArrayList<E> {
public E remove(int index) {

…
}
public boolean remove(Object o) {

…
}
…

}

And the survey says …
53

54

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
public E remove(int index) {

…
}
public boolean remove(Object o) {

…
}
…

}

55

Snippet 5: Java API, but still bad! why?
public class ArrayList<E> {

public E remove(int index) {
…

}
public boolean remove(Object o) {

…
}
…

}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

What does the last call return
(l.remove(index))?

56

Snippet 5: Java API, but still bad! why?
public class ArrayList<E> {

public E remove(int index) {
…

}
public boolean remove(Object o) {

…
}
…

}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

Avoid overloading with
different return values.

57

Snippet 5: Java API, but still bad! why?
public class ArrayList<E> {

public E remove(int index) {
…

}
public boolean remove(Object o) {

…
}
…

}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

Avoid method overloading,
which is statically resolved.

58

Snippet 6: good or bad?
public class Point {

private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}

And the survey says …
59

60

Snippet 6: this is good, but why?
public class Point {

private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}

61

Snippet 6: this is good, but why?
public class Point {

private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}

}

Good encapsulation; immutable object.

62

All for now on design

• We’ll do a light look at UI design later in the course – it’s a course in
itself, CSE 440 – Intro to HCI

• We may also look at some more design patterns, time permitting

• Review the readings on the Calendar and the design primer in the
following slides to refresh your knowledge of design considerations
for your project and 03 Architecture and design milestone

63

Additional Design Material
Provided by René Just, UW CSE Professor
Concepts traditionally covered in CSE 331 – Software design and
implementation

UML crash course

65

UML crash course
The main questions
● What is UML?
● Is it useful, why bother?
● When to (not) use UML?

66

What is UML?
● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

67

What is UML?
● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

68

What is UML?
● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

69

Are UML diagrams useful?

70

Are UML diagrams useful?
Communication
● Forward design (before coding)

○ Brainstorm ideas (on whiteboard or paper).
○ Draft and iterate over software design.

Documentation
● Backward design (after coding)

○ Obtain diagram from source code.

In this class, we will use UML class diagrams mainly for visualization
and discussion purposes.

71

Classes vs. objects
Class
● Grouping of similar objects.

○ Student
○ Car

● Abstraction of common properties and behavior.
○ Student: Name and Student ID
○ Car: Make and Model

Object
● Entity from the real world.
● Instance of a class

○ Student: Joe (4711), Jane (4712), …
○ Car: Audi A6, Honda Civic, ...

72

UML class diagram: basic
notation

MyClass

73

UML class diagram: basic
notation

MyClass
- attr1 : type

+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) :
<return type>
<param> := <name> : <type>

74

UML class diagram: basic
notation

MyClass
- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) :
<return type>
<param> := <name> : <type>

Visibility
- private
~ package-private
protected
+ public 75

UML class diagram: basic
notation

MyClass
- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) :
<return type>
<param> := <name> : <type>

Static attributes or methods are underlined

Visibility
- private
~ package-private
protected
+ public 76

UML class diagram: concrete
example

public class Student
extends Person {

private int id;

public Student(String name,
int id) {

...
}

public int getId() {
return this.id;

}
}

Student

- id : int

+ Student(name:String, id:int)
+ getId() : int

Personpublic class Person {
...

}

77

Classes, abstract classes, and interfaces
<<interface>>

MyInterface
MyAbstractClass

{abstract}

MyClass

78

Classes, abstract classes, and
interfacesMyClass

public class
MyClass {

public void
op() {

...
}

public int
op2() {

...
}

}

<<interface>>

MyInterface
MyAbstractClass

{abstract}

public abstract class
MyAbstractClass {

public abstract void
op();

public int op2() {
...

}
}

public interface
MyInterface {

public void
op();

public int
op2();
}Level of detail in a given class or interface may vary and depends on

context and purpose. 79

UML class diagram: Inheritance

SubClass

<<interface>>
AnInterface

SuperClass

public class SubClass extends SuperClass implements AnInterface

is-a relationship

80

UML class diagram: Aggregation
andComposition

Part

Whole

Part

Whole

Aggregation Composition

has-a relationship has-a relationship

● Existence of Part does not depend
on the existence of Whole.

● Lifetime of Part does not depend
on Whole.

● No single instance of whole is the unique
owner of Part (might be shared with other
instances of Whole).

● Part cannot exist without Whole.
● Lifetime of Part depends on Whole.
● One instance of Whole is the single

owner of Part.

81

Aggregation or Composition?

Room

Building

Customer

Bank
? ? ? ?

82

Aggregation or Composition?

Room

Building

Customer

Bank

Composition Aggregation

What about class and students or body and body parts?

83

UML class diagram: multiplicity
A B

1 1

Each A is associated with exactly one B
Each B is associated with exactly one A

A B
1..2 *

Each A is associated with any number of Bs
Each B is associated with exactly one or two As

84

UML class diagram: navigability
A B

Navigability: not specified

A B
Navigability: unidirectional

“can reach B from A”

A B
Navigability: bidirectional

85

UML class diagram: example

86

Summary: UML

● Unified notation for modeling OO systems.

● Allows different levels of abstraction.

● Suitable for design discussions and

documentation.

87

OO design principles

88

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

89

Information hiding
MyClass

+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
public int nElem;
public int capacity;
public int top;
public int[] elems;
public boolean canResize;

...

public void resize(int s){...}
public void push(int e){...}
public int capacityLeft(){...}
public int getNumElem(){...}
public int pop(){...}
public int[] getElems(){...}

}

90

Information hiding
MyClass

+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
public int nElem;
public int capacity;
public int top;
public int[] elems;
public boolean canResize;

...

public void resize(int s){...}
public void push(int e){...}
public int capacityLeft(){...}
public int getNumElem(){...}
public int pop(){...}
public int[] getElems(){...}

}

What does MyClass do?
91

Information hiding
Stack

+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Anything that could be improved in this implementation?

public class Stack {
public int nElem;
public int capacity;
public int top;
public int[] elems;
public boolean canResize;

...

public void resize(int s){...}
public void push(int e){...}
public int capacityLeft(){...}
public int getNumElem(){...}
public int pop(){...}
public int[] getElems(){...}

}

92

Information hiding
Stack

+ nElem : int
+ capacity : int
+ top : int
+ elems : int[]
+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Stack

+ push(e:int):void
+ pop():int
...

Information hiding:
● Reveal as little information

about internals as possible.
● Segregate public interface and

implementation details.
● Reduces complexity.

- elems : int[]
...

93

Information hiding vs. visibility

Public

???

Private

94

Information hiding vs. visibility

Public

???

Private

● Protected, package-private, or
friend-accessible (C++).

● Not part of the public API.
● Implementation detail that a

subclass/friend may rely on.

95

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

96

A little refresher: what is
Polymorphism?

97

A little refresher: what is
Polymorphism?An object’s ability to provide different behaviors.

Types of polymorphism
● Ad-hoc polymorphism (e.g., operator overloading)

○ a + b ⇒ String vs. int, double, etc.
● Subtype polymorphism (e.g., method overriding)

○ Object obj = ...; ⇒ toString() can be overridden in
subclasses
obj.toString(); and therefore provide a different
behavior.

● Parametric polymorphism (e.g., Java generics)
○ class LinkedList<E> { ⇒ A LinkedList can store

elements
void add(E) {...} regardless of their type but

still
E get(int index) {...} provide full type safety.

98

A little refresher: what is
Polymorphism?An object’s ability to provide different behaviors.

Types of polymorphism

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden

in subclasses
obj.toString(); and therefore provide a
different behavior.

Subtype polymorphism is essential to many OO design principles.

99

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

100

Open/closed principle
Software entities (classes, components, etc.) should
be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o)

} else if (o instanceof Circle) {
drawCircle((Circle) o);

} else {
...

}
}

Good or bad design?

Square

+ drawSquare()

Circle

+ drawCircle()

101

Open/closed principle
Software entities (classes, components, etc.) should
be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
if (o instanceof Square) {
drawSquare((Square) o)

} else if (o instanceof Circle) {
drawCircle((Circle) o);

} else {
...

}
}

Violates the open/closed principle!

Square

+ drawSquare()

Circle

+ drawCircle()

102

Open/closed principle
Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object s) {
if (s instanceof Shape) {

s.draw();
} else {

…
}

}

Square Circle

<<interface>>
Shape

+ draw()

...
public static void draw(Shape s) {
s.draw();

}
103

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

104

Inheritance: (abstract) classes and
interfaces

LinkedList

SequentialList
{abstract}

105

Inheritance: (abstract) classes and
interfaces

LinkedList

SequentialList
{abstract}

extends

LinkedList extends SequentialList

106

Inheritance: (abstract) classes and
interfaces

LinkedList

<<interface>>
List

SequentialList
{abstract}

extends

<<interface>>
Deque

LinkedList extends SequentialList

107

Inheritance: (abstract) classes and
interfaces

LinkedList

<<interface>>
List

SequentialList
{abstract}

extends
implements

<<interface>>
Deque

implements

LinkedList extends SequentialList implements List, Deque

108

Inheritance: (abstract) classes and interfaces

<<interface>>
List

<<interface>>
Collection

<<interface>>
Iterable

109

Inheritance: (abstract) classes and
interfaces

<<interface>>
List

<<interface>>
Collection

extends

<<interface>>
Iterable

List extends Iterable, Collection

110

LinkedList

<<interface>>
List

SequentialList
{abstract}

<<interface>>
Deque

<<interface>>
Collection

extends

extends extends

implements implements

<<interface>>
Iterable

Inheritance: (abstract) classes and interfaces

111

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

112

The “diamond of death”: the
problem

A
+ getNum():int

D

C
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

113

The “diamond of death”: the
problem

A
+ getNum():int

D

C
+ getNum():int

B
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

Which getNum() method
should be called?

114

The “diamond of death”: concrete
example

Animal
+ canFly():bool

Pegasus

Horse
+ canFly():bool

Bird
+ canFly():bool

Can this happen in Java? Yes, with default methods in Java 8. 115

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

116

Design principles: Liskov substitution
principleMotivating example

We know that a square is a special kind of a rectangle.
So, which of the following OO designs makes sense?

Rectangle

Square

Square

Rectangle

117

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Is the subtype requirement fulfilled?

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Design principles: Liskov substitution
principle

118

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
new Rectangle(2,2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution
principle

119

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
new Rectangle(2,2);
new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution
principle

120

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Violates the Liskov substitution principle!

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
new Rectangle(2,2);
new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution
principle

121

Subtype requirement
Let object x be of type T1 and object y be of type T2. Further, let
T2 be a subtype of T1 (T2 <: T1). Any provable property about
objects of type T1 should be true for objects of type T2.

Rectangle
+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int Rectangle Square

<<interface>>
Shape

Design principles: Liskov substitution
principle

122

OO design principles
● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

123

Inheritance vs. (Aggregation vs.
Composition)

Person

Student

public class
Student

extends
Person{

public Student(){
}

...
}

public class Bank {
Customer c;

public Bank(Customer
c){
this.c = c;
}
...
}

Customer

Bank

is-a relationship has-a relationship

Room

Building

public class Building
{
Room r;

public Building(){
this.r = new Room();
}
...
}

124

Design choice: inheritance or composition?

LinkedList

Stack

Hmm, both designs seem valid -- what are pros and cons?

LinkedList

public class Stack<E> implements
List<E> {
private List<E> l = new

LinkedList<>();
...

}

public class Stack<E>
extends

LinkedList<E> {
...

}

Stack

List
<<interface>>

List
<<interface>>

125

Design choice: inheritance or
composition?

Pros
● No delegation methods required.
● Reuse of common state and behavior.

Cons
● Exposure of all inherited methods

(a client might rely on this particular
superclass -> can’t change it later).

● Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

Pros
● Highly flexible and configurable:

no additional subclasses required for
different compositions.

Cons
● All interface methods need to be

implemented -> delegation methods
required, even for code reuse.

LinkedList

Stack

LinkedList

Stack

List
<<interface>>

List
<<interface>>

126

OO design principles: summary
● Information hiding (and encapsulation)
● Open/closed principle
● Liskov substitution principle
● Composition/aggregation over inheritance

127

OO design patterns

128

A first design problem
Weather station revisited

25° F

-3.9° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

129

What’s a good design for the
view component?

09/01,12°
09/02,14°
...

Client
sees uses

manipulatesupdates

25° F

-3.9° C min: 20° F
max: 35° F

Temp.
sensorReset

Reset history
button

130

Weather station: view

ComplexView

<<interface>>
View

+draw(d:Data)

SimpleView GraphView
-views:List<View>

+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

How do we need to
implement

draw(d:Data)?
131

Weather station: view

ComplexView

<<interface>>
View

+draw(d:Data)

SimpleView GraphView
-views:List<View>

+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

public void draw(Data d) {
for (View v : views) {
v.draw(d);

}
}

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

132

The general solution: Composite
pattern

Composite

<<interface>>
Component

+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

133

The general solution: Composite
pattern

Composite

<<interface>>
Component

+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Iterate over all composed
components (comps), call
operation() on each, and
potentially aggregate the
results.

134

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {

// do something
}
...

+read():int
+read(buf:byte[]):int

135

Another design problem: I/O
streams <<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream Problem: filesystem I/O is expensive

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {

// do something
}
...

+read():int
+read(buf:byte[]):int

136

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

Problem: filesystem I/O is expensive
Solution: use a buffer!

Why not simply implement the
buffering in the client or subclass?

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {

// do something
}
...

137

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

BufferedInputStream
-buffer:byte[]

+BufferedInputStream(is:InputStream)
+read():int
+read(buf:byte[]):int

...
InputStream is =

new BufferedInputStream(
new FileInputStream(...));

int b;
while((b=is.read()) != -1) {

// do something
}
...

1

Still returns one byte (int) at a time, but
from its buffer, which is filled by calling
read(buf:byte[]).

138

The general solution: Decorator
pattern <<interface>>

Component
+operation()

CompA CompB
+operation() +operation()

1

Decorator
-decorated:Component

+Decorator(d:Component)
+operation()

139

Composite vs. Decorator
<<interface>>

Component
+operation()

CompA
+operation()

1

Composite
-comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Decorator
-decorated:Component

+Decorator(d:Component)
+operation()

140

