
Version control and git
CSE 403 Software Engineering
Winter 2025

Today’s Outline

2

1. Version control: why, what, how
2. Git: basic concepts for working with a team

See git references and readings on the Calendar

Centralized version control

3

● One central repository
It stores a history of project
versions

● Each user has a working copy

● A user commits file changes
to the repository

● Committed changes are
immediately visible to
teammates who update

● Examples: SVN (Subversion), CVS

Distributed version control

4

● Multiple copies of a repository
Each stores its own history of project
versions

● Each user commits to a local
(private) repository

● All committed changes remain local
unless pushed to another repository

● No external changes are visible
unless pulled from another
repository

● Examples: Git, Hg (Mercurial)

Remote (shared)

Local
(individual)

An example git workflow

5

● git clone (copies remote repo local)
● git checkout (select branch)

● develop
● git commit (local commit)

● git pull (merge changes in remote with
local)

● resolve any conflicts you introduced

● git push OR git pull request (merge local
changes with remote)

Remote (shared)

Local
(individual)

Git quiz commands (short definitions)

• git clone – copy remote repo to local for development

• git fork (github command) – make a new remote repo

• git cherry-pick – apply identified commits to the branch

• git fetch – create a local branch with latest from the remote repo for
comparison

• git pull – merge latest from the remote repo into your local branch
(= git fetch + git merge)

7

Using git with a team for a product delivery

What if you have to support:
• Version 1.0.4 and version 2.0.0
• Windows and macOS
• Adding a feature
• Fixing a bug

Git has 3 ways to represent multiple histories:
● Branch: Start a parallel history of changes to the code in the repository
● Clone: Make a copy of the repository locally to work on code changes
● Fork: Make a copy the repository that will not necessarily be merged

back with original (but can be through a pull request)

8

Branches

9

• Git has a basic concept of a branch
• There is one main development branch (main, master, trunk)
• You should always be able to ship “working software” from main

main
branch

commit point
Represents a sequence of commits

and is one state of the project

HEAD
Most recent

commit point
on main

Branches

10

• To develop a feature, add a new branch
• And then later merge it with main
• Lightweight, as (conceptually) branching simply copies a pointer

to the commit history
• Why is this a good practice?

main
branch

feature
branch

merge point
Branch software merged with main

Branches

11

main
branch

feature
branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for parallel development

Hot fix

Branches

12

main
branch

feature
branch

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for parallel development

Hot fix

Branches

13

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for lots of parallel

development

main
branch

feature
branch1

feature
branch2

Hot fix

Branches

14

• To develop a feature or bug fix, add a new branch
• Why? Keeps main always working and allows for lots of parallel

development

main
branch

feature
branch1

feature
branch2

Hot fix

Cloning

15

Clone
(full-related copy – often on a local host)

• When you clone a repo you are creating a local copy on your computer that
you can sync with the remote

• Ideal for contributing directly to a repo alongside other developers

GitHub
• Can use all git

commands to
commit back to
remote repo

Forking (github concept)

16

• Creates a complete independent copy of the repository (project)
• Allows you to evolve the repo without impacting the original
• If original repo goes away, forked repo will still exist

Fork
(full independent copy)

• It’s possible to update the original but only with pull requests
(original owner approves or not)

GitHub

Which would you choose?

17

Branch (parallel dev), fork (in github), or clone (to local machine)?

Scenario: CSE403 Class Materials GitHub Repo

1. Fix the bugs in the in-class assignment-1
2. Create instance for working on my laptop
3. Create instance for CSE413 to leverage structure of CSE403
4. Create area for Wi25 specific material

Merging
branches

18

Merging branches
• Branches can get out of sync

• merge incorporates changes from one branch into another
• Life goal of a branch is to be merged into main as quickly as possible
• push incorporates changes into main* (shared repo)
• pull request incorporates changes into main* (shared repo) after they are reviewed

• Using pull requests is a CSE403 requirement!

main
branch

feature
branch

Merge point
Branch software merged with main

19*or another specified branch in the shared repo

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

20

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

3 ways to resolve a pull request

21

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

3 ways to resolve a pull request

22

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash &
merge

3 ways to resolve a pull request

23

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash &
merge

same
project
state

3 ways to resolve a pull request

24

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash &
merge

same
project
state

same diff

3 ways to resolve a pull request

26

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash &
merge

same
project
state

3 ways to resolve a pull request

What are the pros
and cons of each?

27

Rebase is a powerful tool, but be careful

28

• Results in a sequential linear commit history
• Changes the commit history
• Others may be working on copy of original tree - painful

for them to sync/merge!

Do not rebase public branches in general
(especially not with a force-push!)

Github has standard
options for these
useful operations for
pull requests

29

Merge
conflicts

30

Merge conflicts
• You and a teammate are editting the same file on your own local branches
• You both execute merges to integrate your changes into main
• Git tries to merge the edits for you, retaining edits from both branches
• A conflict arises when two users change the same line of a file
• The person doing the last merge needs to resolve the conflict by manual editing

main
branch

Kitty’s
branch

Fido’s
branch

Hello, world!

Hello, cats!

Hello, dogs!

???

31

Merge algorithm: may fail to make a merge

● Line-by-line merge
yields a conflict

● Inspection reveals
they can be merged

Initial code

Change 1 Change 2

Merged (unachievable by
line-based merge)

Works despite
changes on
same line

Git’s output
“merge conflict”

32

Merge algorithm: falsely successful merge

● Line-by-line merge yields no
conflicts (“clean merge”)

● Resulting code is incorrect
● Why?

Initial code

Change 1 Change 2

Merged (incorrectly)

Function name changed

Function name not changed

33

How to avoid merge conflicts

34

Synchronize with teammates often

• Pull often
• Avoid getting behind the main branch

• Push (via a pull request) as often as practical
• Don’t destabilize the main build (don’t break the build!)
• Use continuous integration (automatic testing on each push,

even for branches)
• Avoid long-lived branches

35

Commit often
• Every commit should address one concept (be atomic)
• Every concept should be in one commit
• Tests should always pass before commit
• Consider squash and merge when appropriate, e.g.,

bugfix branch that had easily combinable commits

36

Make single-concern branches and atomic commits

They are easier to understand, review, merge, revert
• Do only one task at a time

• Commit after each one is completed

• Create a branch for each simultaneous task
• Easier to share work with teammates
• Single-concern branch ⇒ Atomic commit on main
• Requires a bit of bookkeeping to keep track of them all; don’t overdo it

• Do multiple tasks in one working copy with multiple branches
• Commit only specific files, or only specific parts of files (use Git’s “staging

area” with git add; can interactively choose parts of files)
38

Do not commit all files

Use a .gitignore file

Don’t commit:
● Binary files
● Log files
● Generated files
● Temporary files
Committing would waste space and lead to merge conflicts

39

Plan ahead to avoid merge conflicts

• Modularize your work
• Divide work so that individuals or subteams “own” parts of the code
• Other team members only need to understand its specification
• Requires good documentation and testing

• Communicate about changes that may conflict
• Examples (rare!): reformat whole codebase, move directories, rename

fundamental data structures

• Slow merges down – add some order - to updates to main if
main is getting unstable

40

Tip: lived best practice when merging

41

then
main
branch

feature
branch

main
branch

feature
branch

1. Integrate changes from main to your branch to make sure no
intermediate changes in main have broken your code

2. Merge your branch to main (via a pull request)
3. Not perfect but decreases risk of breaking the build

Questions?

42

Additional material

43

Some resources

44

Git concepts and commands (cheatsheets):
• https://training.github.com/downloads/github-git-cheat-

sheet/
• https://wac-cdn.atlassian.com/dam/jcr:e7e22f25-bba2-

4ef1-a197-53f46b6df4a5/SWTM-2088_Atlassian-Git-
Cheatsheet.pdf?cdnVersion=1272

Github concepts and flows:
• https://githubtraining.github.io/training-manual
• https://www.atlassian.com/git/tutorials/

More Git vocab

• index: staging area (located .git/index)
• content: git tracks a collection of file content, not the file itself
• tree: git's representation of a file system
• working tree: tree representing the local working copy
• staged: ready to be committed
• commit: a snapshot of the working tree (a database entry)
• ref: pointer to a commit object
• branch: just a (special) ref; semantically: represents a line of dev
• HEAD: a ref pointing to the working tree

45

More on rebase

46

Merge vs Rebase

47

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes from main)

48

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (integrating changes into main)

49

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge (best practices do both)

50

1. Integrate changes from Main to your branch to make sure no
intermediate changes in Main have broken your code

2. Merge your branch to Main
3. Not perfect but decreases risk of breaking the build

then

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase

51

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase

52

• Rebase moves the
entire feature
branch to begin
at the tip of the
main branch

• It re-writes
history by
creating new
commits, now in
the main branch

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Merge vs Rebase – why rebase?

53

What’s a benefit of
rebase?
• Clean linear history
• Easier debugging

What’s a risk?
• Losing some

commit history
• Others may be

working on copy of
original tree -
painful for them to
sync/merge! https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (use to rewrite
commits)

54

• Can rewrite
commits as they
move to the main
branch

Change commit
message

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (use to squash)

55

Squash commits
into a single commit

• Squash combines commits

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Interactive Rebase (squash and merge)

56

• Can combine commits
before a merge, too!

• Not uncommon to doSquash commits
into a single commit

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Rebase: a powerful tool, but …

57

Everyone else’s
main branch

Your main
branch

