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Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?  
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Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?  Part-2 on Friday
4. Version control and git (Part-1)

(Optional) Pitch signup sheet available – see Ed for pointer
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Recapping where requirements fit in
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Common stages
• Requirements
• Design
• Implementation
• Testing
• Release
• Maintenance

Virtually all SDLC models have 
the following stages 

Requirements are at the top of 
the list as we start the journey 
of product development



Sharing a visual of their importance
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How the customer 
explained it

How the project 
leader understood

How the analyst 
described it

How the developer 
wrote it

How the business 
consultant described it

How the product 
was documented

How operations 
installed it

How the customer 
was billed

How it was 
supported

What customer 
really needed



What exactly are software requirements?
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Requirements specify what to build

• describe what, not how
• describe customer needs, not how they’ll be implemented
• reflect product design (product goals), not software design

Product requirements describe the product’s functionality in terms 
understandable by devs and customers, with as close to zero ambiguity as 
possible

-Isaac Reynolds, Google GPM



Let’s work through an example
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Are these good requirements for an audio
player?

• Available on web and mobile
• Provide volume control
• Provide ability to flag favorites using a pulldown menu
• Enable variable playback speed 
• Propose songs using ChatGPT recommendations
• Propose songs based on customer selected genres
• Written in javascript for extensibility and reliability



How about our swing example
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What are good and sufficient requirements for the swing?

• Attaches to a single branch of a tree
• Seats one person 3-5ft tall
• Swings when pushed 
• Appeals to environmental advocates 
•
•



Requirements are hard but important
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They help us:
• Understand precisely what is required of the software
• Communicate this understanding precisely to all involved parties
• Monitor and control production to ensure that system meets 

specification



In practice, they’re used by many during SDLC
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• Customers: what should be delivered (contractual base)
• Project managers: scheduling and monitoring (progress indicator)
• Designers: basis for a spec to design the system
• Developers: a range of acceptable implementations
• QA / Testers (DevTest): a basis for testing, 

verification, and validation
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Let’s start with 
some data

From a Standish report 
on software project 
success

Customer involvement 
is 3rd highest factor of 
project success!

https://www.standishgroup.com/sample_research_files/CHAOSReport201
5-Final.pdf



The customer 
is always right

Focus on the 
user and all 

else will follow

Customer 
obsession 
rather than 
competitor 

focus

Understand 
and serve the 

customer 
better than 
anyone else

Successful businesses always start with the 
user’s goal



Ideas?

• Be a user yourself (but be careful not to bias)
• Talk with users informally (hallway chats, mixers) 
• Talk with users formally (interviews, surveys, diary 

studies, field studies)
• Build low-fidelity prototypes (mocks, UX prototypes, 

eng prototypes)
• Launch and get feedback early (“launch and iterate”)

So, how do we engage with customers
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Keep your customer (user) at the center of the discussion
Listen, observe and ask clarifying questions
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Do:
• Talk to the customers -- to learn how they work
• Ask questions throughout the process -- "dig" for requirements
• Think about why users do something in your service, not just what
• Allow (and expect) requirements to change later

Do’s and don’ts in requirements gathering
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Do:
• Talk to the customers -- to learn how they work
• Ask questions throughout the process -- "dig" for requirements
• Think about why users do something in your service, not just what
• Allow (and expect) requirements to change later

Don't:
• Be too specific or detailed
• Describe complex business logic or rules of the system
• Describe the exact user interface used to implement a feature
• Try to think of everything ahead of time* (caveats apply)
• Add unnecessary features not wanted by the customers

Do’s and don’ts in requirements gathering



The whole process is more formally 
known as requirements engineering
The science of eliciting, analyzing, documenting, and maintaining 
requirements

As you collect your class project requirements (02 Requirements), consider 
three categories:
• Functional requirements

• e.g., input-output behavior

• Non-functional requirements
• e.g., security, privacy, scalability

• Additional constraints
• e.g., programming language, frameworks, testing infrastructure
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Requirements can be extensive – leveraging 
existing frameworks (categories, templates) can 
help
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● User features

● Performance and System Health

● Reliability

● Scalability

● Warranties or maintenance goals

● Possible or likely future goals

● Target platforms or environments

● Regulatory and legal 

● External documentation, user “help”

● Marketing claims

● Logging and success metrics

● Manual testing guides

● Accessibility

● Internationalization, localization, 
language support

● Troubleshooting guides

● Leak prevention

● Threat models and security guarantees

● User privacy

● Simplicity and usability



It’s essential to prioritize
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If everything is a “Priority 0” (P0), then 
nothing is!

● P0 means we’d be embarrassed not 
to have this

● P1 is what makes the feature better 
than the competition

● P2 is nice to have



It’s essential to prioritize
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If everything is a “Priority 0” (P0), then 
nothing is!

● P0 means we’d be embarrassed not 
to have this

● P1 is what makes the feature better 
than the competition

● P2 is nice to have

Consider the example of a 
simple “camera” app.

• Takes photos.
• Takes videos.
• Crashes <0.01% of sessions.
• Opens in <1000ms 90% of the time.
• Takes slow motion videos.
• Takes time lapse videos.
• Does 4K30 resolution.
• Supports manual photography controls.
• Supports RAW capture mode.



It’s essential to prioritize
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If everything is a “Priority 0” (P0), then 
nothing is!

● P0 means we’d be embarrassed not 
to have this

● P1 is what makes the feature better 
than the competition

● P2 is nice to have

Consider the example of a 
simple “camera” app.



Meet Alistair Cockburn – Requirements SME
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https://en.wikipedia.org/wiki/Alistair_Cockburn



Cockburn requirements template
1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
5. Other

• Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies

• Business rules (constraints)
• Performance demands
• Security, documentation
• Usability
• Portability
• Unresolved (deferred)

6. Human factors (legal, political, organizational, training)
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Many companies 
will have a template 
for you to use

Uniformity is good 
for you and the 
customer

See what we’re 
asking of you in the 
02 Requirements 
assignment



Use a use case to capture a requirement
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As a [user], I want to
[action] so that 

[result]

1. As a parent, I want to take sharp photos of my kids in 
medium-low light so I can have memories of early 
holiday mornings.

2. As a creative, I want to adjust the look-and-feel of my 
photos so that they match how I remember the moment.

3. As a YouTube Shorts creator, I want to caption my videos
so that people without sound don’t skip my videos.

4. As a restaurateur, I want to take fresh, juicy-looking 
photos of food so that customers want to eat at my 
restaurant.

Camera app
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Use a more formal 
use case to describe 
the requirement (the 

goal) as a journey 

A sequence of 
actions taken by the

“system” and the
“actor”

Actor: As a parent (“actor”), 

Goal: I want to take pictures of my young kids where 
they’re all smiling.

Steps:
1. User arranges the family for a photo.
2. User presses the shutter 3 times in 5 seconds. 
3. System saves 3 full-quality images.
4. User taps “gallery”.
5. System opens the gallery and shows a button to 

“select a better moment”.
6. User taps the button.
7. System creates and shows the “Best Take”.
8. User taps “Save as copy”.*
9. System shows user the saved copy in the gallery.



Closing thoughts: watch out for these as you 
engineer

• Unclear scope leading to unclear requirements
• Finding the right balance (depends on customer, and the team):

• Comprehensible vs. detailed
• Graphics vs. tables and explicit and precise wording
• Short and timely vs. complete and late

• Capturing implementation details instead of requirements
• Projecting your own models/ideas
• Feature creep 
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Feature creep?

Feature creep is the gradual accumulation of features over time, beyond 
what was originally committed and/or actually needed
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Scope | Features

Time Resources

Why does it happen? Because features are fun!
• Developers like to code them
• Sales teams like to pitch them
• Users (think they) want them

Why can it be bad?
• Can put your project delivery at risk
• Too many options, more bugs, more delays, 

less testing, …

For your project, consider 
major features (P0/P1s) and 

stretch features (P2s)
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Why use version control
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11:51pm



Why use version control
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11:51pm 11:57pm



Why use version control – backup/restore
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11:51pm 11:57pm 11:58pm 11:59pm



Why use version control – teamwork
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Who is going to make sense of this mess?



Version control

Version control records changes to a set of files over time
This makes it easy to review or obtain a specific version (later)
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Goals of a version control system

Version control records changes to a set of files over time 

This enables you to:
○ Keep a history of your work

■ Summary commit title
■ See which lines were co-changed

○ Checkpoint specific versions (known good state)
■ Recover specific state

○ Binary search over revisions
■ Find the one that introduced a defect

○ Undo arbitrary changes
■ Without affecting prior or subsequent changes

○ Maintain multiple releases of your product

AND it enables you to 
effectively coordinate 
with others working on 
the same work product



Who uses version control?

Everyone should use version control
● Large teams (100+ developers)
● Small teams (2-10+ developers)
● Yourself (and your future self)

Example application domains
● Software development
● Hardware development
● Research & experiments (infrastructure and data)
● Applications (e.g., (cloud-based) services)
● Services that manage artifacts (e.g., legal, accounting, business, …)



Version control repositories

Working by yourself
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Centralized version control (older method)
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● One central repository
It stores a history of project 
versions

● Each user has a working copy

● A user commits file changes
to the repository

● Committed changes are 
immediately visible to 
teammates who update

● Examples: SVN (Subversion), CVS



Distributed version control (newer method)
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● Multiple copies of a repository
Each stores its own history of project 
versions

● Each user commits to a local
(private) repository

● All committed changes remain local
unless pushed to another repository

● No external changes are visible
unless pulled from another 
repository

● Examples: Git, Hg (Mercurial)



Two different version control modes



Version control with Git
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Linus Torvalds - Wikipedia

Linux 



Let’s do a little true/false 
quiz to see what you 
know already about git
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PollEv.com /cse403wi
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Coming up next

1. What are requirements and what is their value?
2. How can we gather requirements?       

3.  What are techniques used to specify requirements?
• Use cases
• Personas, user scenarios

4. More on version control with git and github
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