
Software Requirements
CSE 403 Software Engineering
Winter 2025

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them?

UW CSE 403 Wi25 2

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them? Part-2 on Friday
4. Version control and git (Part-1)

(Optional) Pitch signup sheet available – see Ed for pointer

UW CSE 403 Wi25 3

Recapping where requirements fit in

UW CSE 403 Wi25 4

Common stages
• Requirements
• Design
• Implementation
• Testing
• Release
• Maintenance

Virtually all SDLC models have
the following stages

Requirements are at the top of
the list as we start the journey
of product development

Sharing a visual of their importance

UW CSE 403 Wi25 5

How the customer
explained it

How the project
leader understood

How the analyst
described it

How the developer
wrote it

How the business
consultant described it

How the product
was documented

How operations
installed it

How the customer
was billed

How it was
supported

What customer
really needed

What exactly are software requirements?

UW CSE 403 Wi25 6

Requirements specify what to build

• describe what, not how
• describe customer needs, not how they’ll be implemented
• reflect product design (product goals), not software design

Product requirements describe the product’s functionality in terms
understandable by devs and customers, with as close to zero ambiguity as
possible

-Isaac Reynolds, Google GPM

Let’s work through an example

UW CSE 403 Wi25 7

Are these good requirements for an audio
player?

• Available on web and mobile
• Provide volume control
• Provide ability to flag favorites using a pulldown menu
• Enable variable playback speed
• Propose songs using ChatGPT recommendations
• Propose songs based on customer selected genres
• Written in javascript for extensibility and reliability

How about our swing example

UW CSE 403 Wi25 8

What are good and sufficient requirements for the swing?

• Attaches to a single branch of a tree
• Seats one person 3-5ft tall
• Swings when pushed
• Appeals to environmental advocates
•
•

Requirements are hard but important

UW CSE 403 Wi25 9

They help us:
• Understand precisely what is required of the software
• Communicate this understanding precisely to all involved parties
• Monitor and control production to ensure that system meets

specification

In practice, they’re used by many during SDLC

UW CSE 403 Wi25 10

• Customers: what should be delivered (contractual base)
• Project managers: scheduling and monitoring (progress indicator)
• Designers: basis for a spec to design the system
• Developers: a range of acceptable implementations
• QA / Testers (DevTest): a basis for testing,

verification, and validation

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them? Part-2 on Friday
4. Version control and git (Part-1)

UW CSE 403 Wi25 11

UW CSE 403 Wi25 12

Let’s start with
some data

From a Standish report
on software project
success

Customer involvement
is 3rd highest factor of
project success!

https://www.standishgroup.com/sample_research_files/CHAOSReport201
5-Final.pdf

The customer
is always right

Focus on the
user and all

else will follow

Customer
obsession
rather than
competitor

focus

Understand
and serve the

customer
better than
anyone else

Successful businesses always start with the
user’s goal

Ideas?

• Be a user yourself (but be careful not to bias)
• Talk with users informally (hallway chats, mixers)
• Talk with users formally (interviews, surveys, diary

studies, field studies)
• Build low-fidelity prototypes (mocks, UX prototypes,

eng prototypes)
• Launch and get feedback early (“launch and iterate”)

So, how do we engage with customers

UW CSE 403 Wi25 14

Keep your customer (user) at the center of the discussion
Listen, observe and ask clarifying questions

UW CSE 403 Wi25 15

Do:
• Talk to the customers -- to learn how they work
• Ask questions throughout the process -- "dig" for requirements
• Think about why users do something in your service, not just what
• Allow (and expect) requirements to change later

Do’s and don’ts in requirements gathering

UW CSE 403 Wi25 16

Do:
• Talk to the customers -- to learn how they work
• Ask questions throughout the process -- "dig" for requirements
• Think about why users do something in your service, not just what
• Allow (and expect) requirements to change later

Don't:
• Be too specific or detailed
• Describe complex business logic or rules of the system
• Describe the exact user interface used to implement a feature
• Try to think of everything ahead of time* (caveats apply)
• Add unnecessary features not wanted by the customers

Do’s and don’ts in requirements gathering

The whole process is more formally
known as requirements engineering
The science of eliciting, analyzing, documenting, and maintaining
requirements

As you collect your class project requirements (02 Requirements), consider
three categories:
• Functional requirements

• e.g., input-output behavior

• Non-functional requirements
• e.g., security, privacy, scalability

• Additional constraints
• e.g., programming language, frameworks, testing infrastructure

UW CSE 403 Wi25 17

Requirements can be extensive – leveraging
existing frameworks (categories, templates) can
help

UW CSE 403 Wi25 18

● User features

● Performance and System Health

● Reliability

● Scalability

● Warranties or maintenance goals

● Possible or likely future goals

● Target platforms or environments

● Regulatory and legal

● External documentation, user “help”

● Marketing claims

● Logging and success metrics

● Manual testing guides

● Accessibility

● Internationalization, localization,
language support

● Troubleshooting guides

● Leak prevention

● Threat models and security guarantees

● User privacy

● Simplicity and usability

It’s essential to prioritize

UW CSE 403 Wi25 19

If everything is a “Priority 0” (P0), then
nothing is!

● P0 means we’d be embarrassed not
to have this

● P1 is what makes the feature better
than the competition

● P2 is nice to have

It’s essential to prioritize

UW CSE 403 Wi25 20

If everything is a “Priority 0” (P0), then
nothing is!

● P0 means we’d be embarrassed not
to have this

● P1 is what makes the feature better
than the competition

● P2 is nice to have

Consider the example of a
simple “camera” app.

• Takes photos.
• Takes videos.
• Crashes <0.01% of sessions.
• Opens in <1000ms 90% of the time.
• Takes slow motion videos.
• Takes time lapse videos.
• Does 4K30 resolution.
• Supports manual photography controls.
• Supports RAW capture mode.

It’s essential to prioritize

UW CSE 403 Wi25 21

If everything is a “Priority 0” (P0), then
nothing is!

● P0 means we’d be embarrassed not
to have this

● P1 is what makes the feature better
than the competition

● P2 is nice to have

Consider the example of a
simple “camera” app.

Meet Alistair Cockburn – Requirements SME

UW CSE 403 Wi25 22
https://en.wikipedia.org/wiki/Alistair_Cockburn

Cockburn requirements template
1. Purpose and scope
2. Terms (glossary)
3. Use cases (the central artifact of requirements)
4. Technology used
5. Other

• Development process: participants, values (fast-good-cheap),
visibility, competition, dependencies

• Business rules (constraints)
• Performance demands
• Security, documentation
• Usability
• Portability
• Unresolved (deferred)

6. Human factors (legal, political, organizational, training)

UW CSE 403 Wi25 23

Many companies
will have a template
for you to use

Uniformity is good
for you and the
customer

See what we’re
asking of you in the
02 Requirements
assignment

Use a use case to capture a requirement

UW CSE 403 Wi25 24

As a [user], I want to
[action] so that

[result]

1. As a parent, I want to take sharp photos of my kids in
medium-low light so I can have memories of early
holiday mornings.

2. As a creative, I want to adjust the look-and-feel of my
photos so that they match how I remember the moment.

3. As a YouTube Shorts creator, I want to caption my videos
so that people without sound don’t skip my videos.

4. As a restaurateur, I want to take fresh, juicy-looking
photos of food so that customers want to eat at my
restaurant.

Camera app

25

Use a more formal
use case to describe
the requirement (the

goal) as a journey

A sequence of
actions taken by the

“system” and the
“actor”

Actor: As a parent (“actor”),

Goal: I want to take pictures of my young kids where
they’re all smiling.

Steps:
1. User arranges the family for a photo.
2. User presses the shutter 3 times in 5 seconds.
3. System saves 3 full-quality images.
4. User taps “gallery”.
5. System opens the gallery and shows a button to

“select a better moment”.
6. User taps the button.
7. System creates and shows the “Best Take”.
8. User taps “Save as copy”.*
9. System shows user the saved copy in the gallery.

Closing thoughts: watch out for these as you
engineer

• Unclear scope leading to unclear requirements
• Finding the right balance (depends on customer, and the team):

• Comprehensible vs. detailed
• Graphics vs. tables and explicit and precise wording
• Short and timely vs. complete and late

• Capturing implementation details instead of requirements
• Projecting your own models/ideas
• Feature creep

UW CSE 403 Wi25 26

Feature creep?

Feature creep is the gradual accumulation of features over time, beyond
what was originally committed and/or actually needed

27

Scope | Features

Time Resources

Why does it happen? Because features are fun!
• Developers like to code them
• Sales teams like to pitch them
• Users (think they) want them

Why can it be bad?
• Can put your project delivery at risk
• Too many options, more bugs, more delays,

less testing, …

For your project, consider
major features (P0/P1s) and

stretch features (P2s)

Today’s Outline

1. What are requirements and what is their value?
2. How can we gather requirements?
3. What are techniques used to specify them? Part-2 on Friday
4. Version control and git (Part-1)

UW CSE 403 Wi25 28

Why use version control

UW CSE 403 Wi25 29

11:51pm

Why use version control

UW CSE 403 Wi25 30

11:51pm 11:57pm

Why use version control – backup/restore

UW CSE 403 Wi25 31

11:51pm 11:57pm 11:58pm 11:59pm

Why use version control – teamwork

UW CSE 403 Wi25 32

Who is going to make sense of this mess?

Version control

Version control records changes to a set of files over time
This makes it easy to review or obtain a specific version (later)

UW CSE 403 Wi25 33

Goals of a version control system

Version control records changes to a set of files over time

This enables you to:
○ Keep a history of your work

■ Summary commit title
■ See which lines were co-changed

○ Checkpoint specific versions (known good state)
■ Recover specific state

○ Binary search over revisions
■ Find the one that introduced a defect

○ Undo arbitrary changes
■ Without affecting prior or subsequent changes

○ Maintain multiple releases of your product

AND it enables you to
effectively coordinate
with others working on
the same work product

Who uses version control?

Everyone should use version control
● Large teams (100+ developers)
● Small teams (2-10+ developers)
● Yourself (and your future self)

Example application domains
● Software development
● Hardware development
● Research & experiments (infrastructure and data)
● Applications (e.g., (cloud-based) services)
● Services that manage artifacts (e.g., legal, accounting, business, …)

Version control repositories

Working by yourself

36UW CSE 403 Wi25

Centralized version control (older method)

UW CSE 403 Wi25 37

● One central repository
It stores a history of project
versions

● Each user has a working copy

● A user commits file changes
to the repository

● Committed changes are
immediately visible to
teammates who update

● Examples: SVN (Subversion), CVS

Distributed version control (newer method)

UW CSE 403 Wi25 38

● Multiple copies of a repository
Each stores its own history of project
versions

● Each user commits to a local
(private) repository

● All committed changes remain local
unless pushed to another repository

● No external changes are visible
unless pulled from another
repository

● Examples: Git, Hg (Mercurial)

Two different version control modes

Version control with Git

UW CSE 403 Wi25 40

Linus Torvalds - Wikipedia

Linux

Let’s do a little true/false
quiz to see what you
know already about git

UW CSE 403 Wi25 41

PollEv.com /cse403wi

UW CSE 403 Wi25 42

UW CSE 403 Wi25 43

UW CSE 403 Wi25 44

UW CSE 403 Wi25 45

UW CSE 403 Wi25 46

UW CSE 403 Wi25 47

UW CSE 403 Wi25 48

UW CSE 403 Wi25 49

UW CSE 403 Wi25 50

Coming up next

1. What are requirements and what is their value?
2. How can we gather requirements?

3. What are techniques used to specify requirements?
• Use cases
• Personas, user scenarios

4. More on version control with git and github

UW CSE 403 Wi25 51

