
Software Development
Lifecycles
CSE 403 Software Engineering
Winter 2025

Today’s Outline

• Project proposals
• Elevator pitches

• Software development lifecycles (SDLC)
• What and why are they needed
• Recurring themes
• Popular models and their tradeoffs

UW CSE 403 Wi25 2

Assignment 1 – Project Proposals

UW CSE 403 Wi25 3

An elevator pitch is a brief, persuasive speech that you use to spark interest in a product,
project or idea, or in yourself. An elevator pitch is short, about the time you spend in an

elevator, hence the name.

https://asana.com/resources/elevator-pitch-examples

You have 2
minutes for your
project pitch to
the class - this is
a good example
of how it could
flow

Your turn

UW CSE 403 Wi25 5

You have 2-3
minutes for your
project pitch to
the class - this is
a good example
of how it could
flow

Try pitching your project, or yourself, to your neighbor

Introduce yourself

Present the problem

Present your solution
(This is your lucky day!)

Share your value proposition

Add a call to action

Another tool you’ll see used for pitches

6

Write a mock product press release!

Includes
• A catchy headline
• Problem trying to solve
• Value proposition
• How differs from competitors
• Release timing and teaser of future beyond release
• Quotes from well known users showing their

delight

Excellent way to paint the vision and get buy in to
build it

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

https://jdmeier.com/how-to-create-innovative-disruption-with-mock-press-releases/

https://www.linkedin.com/pulse/working-backwards-press-release-template-
example-ian-mcallister

See:

7

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

Software Engineering is …

UW CSE 403 Wi25 8

An engineering discipline concerned with all aspects of software production from
the early stages of system specification [requirements] through to maintaining
[evolving] the system after it has gone into use. — Ian Sommerville

Software Engineering tasks include:
• Requirements engineering
• Specification writing and documentation
• Architecture and design
• Programming
• Testing and debugging
• Deploying, operating, evaluating, refactoring and evolving
• Planning, teamwork and communication

Lifecycles: Here’s the challenge

UW CSE 403 Wi25 9

You have 2-3
minutes for your
project pitch to
the class - this is
a good example
of how it could
flow

Problem
Specification

???

Source Code
Solution

One solution: Code and fix

UW CSE 403 Wi25 10

Specification
(maybe)

Deliver
(maybe)

SDLC: Code and fix

UW CSE 403 Wi25 11

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly
• Applicable sometimes for small projects, short-lived prototypes, and/or

small teams

Cons:
• <Over to you>

SDLC: Code and fix

UW CSE 403 Wi25 12

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly
• Applicable sometimes for small projects, short-lived prototypes, and/or small teams

Cons:
• No way to assess progress, quality or risks
• Challenging to manage multiple developers – how synchronize your work
• Harder to accommodate changes without a major design overhaul
• Unclear delivery of features (scope), timing, and support

Let’s look at data

The Power of Process | Steve McConnell

Projects with little attention on SDLC process

Thrashing:
doing a lot of
work but not
making
progress
towards the
goal

Let’s look at data

UW CSE 403 Wi25 14

Projects with early attention to SDLC process

The Power of Process | Steve McConnell

Is a more structured SDLC necessary?

It’s used to establish an order – provide a model - in which software project
events occur from project conception to project delivery

• It forces us to think of the “big picture” and follow steps so that we
reach it without glaring deficiencies

• Without it we may make decisions that are individually on target but
collectively misdirected

• It allows us to organize and coordinate our work as a team

• It allows us to track progress and risks, and adjust as necessary

UW CSE 403 Wi25 15

Recurring themes in SDLCs

A SDLC defines how to produce software through a series of stages

UW CSE 403 Wi25 16

Goals of each stage

• Define a clear set of actions to perform
• Produce tangible (trackable) items
• Allow for work revision
• Plan actions to perform in the next stage

Common stages

• Requirements
• Design
• Implementation
• Testing
• Release
• Maintenance

Key question: how to combine the stages and in what order

• Project proposals
• Elevator pitches

• Software development lifecycles (SDLC)
• What and why are they needed
• Recurring themes
• Popular models and their tradeoffs

• Waterfall model
• Prototyping
• Spiral model
• Staged delivery
• Agile (XP, Scrum)

Today’s Outline

UW CSE 403 Wi25 17

All have the same goal – deliver
high quality software, on time,
meeting the customers needs

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Wi25 18

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Wi25 19

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Conceptually very
clean, but what’s

missing?

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Wi25 20

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Conceptually very
clean, but what’s

missing?

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

UW CSE 403 Wi25 21

Requirements

Architecture/Design

Implementation

Verification

Maintenance

In what context
would it work

well?

In what context
would it work

well?

22

Likely parts of their SDLC is
waterfall-like due to the upfront
and regulated requirements

SDLC: Waterfall pros and cons

Pros:
• Simple to understand
• Promotes common dialogue
• Highly regulated deliverables

Cons:
• Hard to do all the planning upfront
• Inflexible – changes are expensive
• Test and integration come late –

fixes are expensive
• Final product may not match the

customer’s needs

UW CSE 403 Wi25 23

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: [Rapid | Evolutionary] Prototyping

UW CSE 403 Wi25 24

• Problem domain or requirements
not well defined or understood

• Create small implementations of
requirements that are least understood

• Requirements are “explored” before the
product is fully developed

• Developers (and customers) gain experience
when developing the product

• Prototype can evolve to the real product or can
serve to be a learning tool only

Prototype

ReviewRefine

SDLC: Prototyping

UW CSE 403 Wi25 25

Prototype

ReviewRefine

In what context
would it work

well?

In what context
would it work

well?

• Problem domain or requirements
not well defined or understood

• Create small implementations of
requirements that are least understood

• Requirements are “explored” before the
product is fully developed

• Developers (and customers) gain experience
when developing the product

• Prototype can evolve to the real product or can
serve to be a learning tool only

https://internetdevels.com/blog/what-is-website-prototype-how-build-
website-prototype

https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-desktop

UI prototyping
is popular

26

SDLC: Prototyping pros and cons

UW CSE 403 Wi25 27

Pros:
• Client involvement and early feedback
• Improves requirements and specifications
• Reduces risk of developing the “wrong” product

Cons:
• Time/cost for developing may be high
• Hard to commit what will be delivered and

when
• May end up evolving a poor choice (limit

thinking holistically)

Prototype

ReviewRefine

SDLC: Spiral Model

• Incremental/iterative model (combines
waterfall and prototyping)

• Iterations called spirals
• Repeat these activities:

1. Determine objectives (reqs)
2. Risk analysis
3. Develop and test
4. Plan next delivery

• Phased reduction of risks
(address high risks early)

Boehm, Spiral Development: Experience, Principles,and Refinements
28

Incremental
deliveries

SDLC: Spiral Model pros and cons

UW CSE 403 Wi25

Pros:
• Early indication of unforeseen

problems
• Allows for changes
• The risk reduces as costs increase

Cons:
• More complex to run
• Requires proper risk assessment
• Requires more planning and

experienced management

29

SDLC: Spiral Model importance

UW CSE 403 Wi25 30

• Interesting to us as it’s a
precursor to agile models

• Software development is based on
iteration, using “risk reduction”
as the criteria to prioritize
activities at each iteration

SDLC: Lots of variants - Staged Delivery

• Waterfall-like planning
upfront then spiral/scrum-like
short release cycles

• Pros: ?
• Cons: ?

UW CSE 403 Wi25 31

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 1: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

McConnell: https://stevemcconnell.com/

SDLC: Staged Delivery pros and cons

• Pros:
• Can ship at the end of any

release cycle
• Intermediate deliveries show

progress, satisfy customers,
and lead to feedback

• Problems are visible early
• Cons:

• Requires tight coordination
• Product must be

decomposable
• Extra releases cause overhead

UW CSE 403 Wi25 32

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 1: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

• Project proposals
• Elevator pitches

• Software development lifecycles (SDLC)
• What and why are they needed
• Recurring themes
• Popular models and their tradeoffs

• Waterfall model
• Prototyping
• Spiral model
• Staged delivery
• Agile (XP, Scrum)

Today’s Outline

UW CSE 403 Wi25 33

Traditional models

Onto Agile models

What is Agile all about?
Premise: the world is too uncertain, and we must be
flexible and responsive to changes

UW CSE 403 Wi24 34

There is nothing permanent except change -
Heraclitus (Greek philosopher)

It is not the strongest or the most intelligent who will
survive but those who can best manage change -

Charles Darwin (English naturalist)

Agile Manifesto

Agile Manifesto (http://agilemanifesto.org/):
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

While there is value in the items on
the right, we value the items on the left more.

UW CSE 403 Wi24 35

A Behind the Scenes Look at the Writing of the Agile Manifesto

Agile models

UW CSE 403 Wi24 36

“Agile software development” is a general term for values, frameworks
and practices outlined in the Agile Manifesto

Agile models
• Aim to deliver a high-quality product to the customer as fast as possible

• Focus on simplicity, excellence, continuous testing, integration

• Incremental and frequent delivery of working software

• Continuous customer involvement

• Expect requirements to change

http://agilemanifesto.org/principles.html

Agile SDLC: Extreme Programming (XP)

UW CSE 403 Wi24 37

https://www.nimblework.com/agile/extreme-programming-xp/

• XP emphasizes how
engineers should work –
good practices taken to an
extreme

• Examples:
• Continuous testing and

integration
• 10-minute build
• Constant discussions

with customers
• Full flexibility to change

requirements anytime
• Pair programming
• Test-driven development

Agile and XP
12 Agile Manifesto Principles

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

38

12 XP Practices

Fine-scale feedback
• Pair programming
• Planning game
• Test-driven development
• Whole team

Continuous process
• Continuous integration
• Refactoring or design improvement
• Small releases

Shared understanding
• Coding standards
• Collective code ownership
• Simple design
• System metaphor

Programmer welfare
• Sustainable pace

Agile and XP
12 Agile Manifesto Points

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

39

12 XP Practices

Fine-scale feedback
• Pair programming
• Planning game
• Test-driven development
• Whole team

Continuous process
• Continuous integration
• Refactoring or design improvement
• Small releases

Shared understanding
• Coding standards
• Collective code ownership
• Simple design
• System metaphor

Programmer welfare
• Sustainable pace

XP Practice: Pair Programming

UW CSE 403 Wi24 40

Pair programming – All production
software is developed by two people
sitting at the same machine

Provides for continuous code
development, collaboration and review

Thoughts?

XP Practice: Test driven development

UW CSE 403 Wi24 41

Write tests based on the requirements -
before the production code is even
written - and then develop code to
make the tests pass

Tests run early and often

Thoughts?

Write
test

Write
code to

pass test

Refactor
code

Agile SDLC: Scrum

UW CSE 403 Wi24 42

• Many analogies with
XP

• Scrum focuses on
management and
productivity

• XP addresses
software quality and
engineering
techniques

Agile Summary

UW CSE 403 Wi24 43

Pros
• Flexibility (changes are expected)
• Focus on quality (continuous testing)
• Focus on communication – with customers – with team

Cons
• Requires experienced management and skilled developers

(e.g., responsible, proactive, communicate well)

• Prioritizing requirements can be difficult when there are multiple
stakeholders

• Needs customer to be flexible in delivery (what / when)

Why are there so many SDLC models?!

UW CSE 403 Wi25 44

Choices are good !
• The choice depends on the project context and

requirements
• All models have the same goals: manage risks and produce

high quality software
• All models involve the same general activities and stages

(e.g., specification, design, implementation, and testing) and
can be tailored

• Today’s models involve customer feedback and the ability to
adapt to changing requirements

