
CSE 403
Software Engineering

Advanced program analysis

A primer on solver-aided reasoning
and verification

What is a SAT solver? What is a SAT solver?

● Takes a formula (propositional logic) as input.

(X1 ∨ X2) ∧ (￢X1 ∨ X3) ∧ (X1 ∨ ￢X3) ∧ (￢X2 ∨ ￢X3)

What is a SAT solver?

● Takes a formula (propositional logic) as input.
● Returns a model (an assignment that satisfies the formula).

(X1 ∨ X2) ∧ (￢X1 ∨ X3) ∧ (X1 ∨ ￢X3) ∧ (￢X2 ∨ ￢X3)

X = {X1, X2, X3} = {T, F, T}

SAT solver

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
○ Supports formulas for more complex data types
○ Theories for Integers, Strings, Arrays, etc.

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
○ Supports formulas for more complex data types
○ Theories for Integers, Strings, Arrays, etc.
○ Examples for Integers:

■ a * 1 = a (identity element)
■ a + 0 = a (identity element)

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.

(echo "Running Z3...")
(declare-const a Int)

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.
○ Define constraints.

(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))

What is Z3?

● An SMT (Satisfiability Modulo Theories) solver.
● Uses a standard language (SMT-LIB).

○ Print to the screen.
○ Declare variables and functions.
○ Define constraints.
○ Check satisfiability and obtain a model.
○ ...

(echo "Running Z3...")
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

Which question does this code answer?

A first example

1 int simpleMath(int a, int b) {
2 assert(b>0);
3 if(a + b == a * b) {
4 return 1;
5 }
6 return 0;
7 }

Does this method ever return 1? Let’s ask Z3...

A first example

1 int simpleMath(int a, int b) {
2 assert(b>0);
3 if(a + b == a * b) {
4 return 1;
5 }
6 return 0;
7 }

Does this method ever return 1? Let’s ask Z3...

(declare-const a Int)
(declare-const b Int)

(assert (> b 0))
(assert (= (+ a b) (* a b)))

(check-sat)
(get-model)

A more complex example

1 int getNumber(int a, int b, int c) {
2 if (c==0) return 0;
3 if (c==4) return 0;
4 if (a + b < c) return 1;
5 if (a + b > c) return 2;
6 if (a * b == c) return 3;
7 return 4;
8 }

Does this method ever return 3?
What constraints must be satisfied?

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

Are these two methods semantically equivalent?

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

Are these two methods semantically equivalent?

(declare-const a Int)
(declare-const b Int)

(declare-const add1 Int)
(declare-const add2 Int)

(assert (= add1 (+ a b)))
(assert (= add2 (* a b)))
(assert (= add1 add2))

(check-sat)
(get-model)

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

(declare-const a Int)
(declare-const b Int)

(declare-const add1 Int)
(declare-const add2 Int)

(assert (= add1 (+ a b)))
(assert (= add2 (* a b)))
(assert (= add1 add2))

(check-sat)
(get-model)

Yes, for a=2 and b=2.
What have we actually proven here?

Reasoning about program equivalence
1 int add1(int a, int b) {
2 return a + b;
3 }
4
5 int add2(int a, int b) {
6 return a * b;
7 }

For universal claims, our goal is to prove the absence of
counter examples (i.e., the defined constraints are unsat)!

(declare-const a Int)
(declare-const b Int)

(declare-const add1 Int)
(declare-const add2 Int)

(assert (= add1 (+ a b)))
(assert (= add2 (* a b)))
(assert (not (= add1 add2)))

(check-sat)
(get-model)

Summary

● Solver-aided reasoning is used for testing and verification.
● SMT solvers:

○ Provide one solution, if one exists.
○ Are commonly used to find counter-examples (or prove unsat).
○ Support many theories that can model program semantics.
○ Usually support a standard language (SMT-lib).

● The challenge is to model a problem as a constraint system.
A few examples:
○ Statistical test selection
○ Data-structure synthesis
○ Program synthesis

● Many higher-level DSLs and language bindings exist.

