
CSE 403
Software Engineering

Program Analysis

● Delta Debugging: discussion
● Reasoning about programs
● Dynamic vs. static program analysis

Today

Delta debugging: discussion

● Applicability: Is this useful (as a concept and/or automated tool)?

● Optimality: minimal vs. minimum test case.

● Complexity: Best-case vs. worst-case.

● Assumptions: monotonicity and determinism.

 https://www.st.cs.uni-saarland.de/dd/

Reasoning about programs

Reasoning about programs
Use cases
● Verification/testing: ensure code is correct
● Prove facts to be true, e.g.:

○ x is never null
○ y is always greater than 0
○ input array a is sorted

● Debugging: understand why code is incorrect

Approaches
● Testing (403)
● (Delta) Debugging (403)
● Abstract interpretation (primer in 403, covered in 503)
● Theorem proving (primer in 403, covered in 507)
● ...

Forward vs. backward reasoning

Forward reasoning
● Knowing: a fact that is true before execution.
● Reasoning: what must be true after execution.
● Given a precondition, what postcondition(s) are true?

Backward reasoning
● Knowing: a fact that is true after execution.
● Reasoning: what must have been true before execution.
● Given a postcondition, what precondition(s) must hold?

Forward vs. backward reasoning

Forward reasoning
● More intuitive for most people
● Helps understand what will happen (simulates the code)
● Introduces facts that may be irrelevant to the goal
● Set of current facts may get large
● Takes longer to realize that the task is hopeless

Backward reasoning
● Usually more helpful
● Helps understand what should happen
● Given a specific goal, indicates how to achieve it
● Given an error, gives a test case that exposes it

Pre/Post-conditions and Invariants

Terminology

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

Pre-conditions define execution validity. Post-conditions and loop
invariants define expected properties of a correct implementation,
given a valid execution.

Pre-conditions and post-conditions

 1 double avgAbs(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i != n) {
 7 if(nums[i]>0) {
 8 sum = sum + nums[i];
 9 else {
10 sum = sum - nums[i];
11 }
12 i = i + 1;
13 }
14
15 return sum / n;
16 }

What are pre-conditions
and post-conditions of

this method (at the entry
and exit points)?

Exit point

Entry point

(Loop) invariants

 1 double avgAbs(double[] nums) {
 2 int n = nums.length;
 3 double sum = 0;
 4

 5 int i = 0;
 6 while (i != n) {
 7 if(nums[i]>0) {
 8 sum = sum + nums[i];
 9 else {
10 sum = sum - nums[i];
11 }
12 i = i + 1;
13 }
14
15 return sum / n;
16 }

Does this loop terminate?
What are pre-conditions,

post-conditions,
and loop invariants?

Summary

Pre-condition (to a function)
● A condition that must be true when entering (the function)
● May include expectations about the arguments

Post-condition (to a function)
● A condition that must be true when leaving (the function)

Loop invariant
● A condition that must be true for every loop iteration
● Must be true at the beginning and end of the loop body

How are these related to software testing and debugging?

Dynamic vs. static program analysis

Properties of an ideal program analysis

● Soundness
● Completeness
● Termination

…
int x = 0;
while (!isDone()) {
 x = x + 1;
}

…

A

B

C

Static analyses usually sacrifice completeness (for soundness).

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

[y:=2, x:=2]

y = x++

???

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=even, x:=even]

y = x++

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=even, x:=even]

y = x++

???

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=even, x:=even]

y = x++

[y:=even, x:=odd]

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=prime, x:=prime]

y = x++

???

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

[y:=prime, x:=prime]

y = x++

[y:=prime, x:=anything]

Dynamic vs. static analysis

* Some static analyses are unsound; dynamic analyses can be sound.

Dynamic analysis
● Reason about the program based on some program executions.
● Observe concrete behavior at run time.
● Improve confidence in correctness.
● Unsound* but precise.

Static analysis
● Reason about the program without executing it.
● Build an abstraction of run-time states.
● Reason over abstract domain.
● Prove a property of the program.
● Sound* but imprecise.

[y:=2, x:=2]

y = x++

[y:=2, x:=3]

Dynamic vs. static analysis

The statement “f returns a
non-negative value” is weaker
(but easier to establish) than
the statement
“f returns the absolute value
of its argument”.

Dynamic analysis: examples

Software testing

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

A test for the avg function:

@Test
public void testAvg() {
 double nums =

 new double[]{1.0, 2.0, 3.0});
 double actual = Math.avg(nums);
 double expected = 2.0;
 assertEquals(expected,actual,EPS);
}

static OSStatus
SSLVerifySignedServerKeyExchange(...) {

OSStatus err;
...
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx, ctx->peerPubKey, dataToSign, dataToSignLen, signature, signatureLen);
if(err) {

sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify returned %d\n", (int)err);
goto fail;

}
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

Static analysis: examples
Apple’s “goto fail” bug:
a security vulnerability

for 2 years!

Static analysis: examples

Rule/pattern-based analysis (PMD, Findbugs, Error Prone, etc.)

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n) {
 sum = sum + nums[i];
 i = i + 1;
 }
 double avg = sum / n;

 return avg;
}

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n)
 sum = sum + nums[i];
 i = i + 1;

 double avg = sum / n;

 return avg;
}

Static analysis: examples

Compiler: type checking

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0;
 while (i<n) {
 sum = sum + nums[i];
 i = i + 1;
 }
 double avg = sum / n;

 return avg;
}

double avg(double[] nums) {
 int n = nums.length;
 double sum = 0;

 int i = 0.0;
 while (i<n) {
 sum = sum + nums[i];
 i = i + 1;
 }
 double avg = sum / n;

 return avg;
}

Static analysis: examples

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Program

Are all statements necessary?

Compiler checks and optimizations
● Liveness analysis (register reallocation)
● Reachability analysis (dead code elimination)
● Code motion (while(cond){x = comp(); ...})

Static analysis: applications

Dynamic vs. static analysis

Static analysis

● Abstract domain
● Sound but imprecise
● Slow if precise

Dynamic analysis

● Concrete domain
● Precise but unsound
● Slow if exhaustive

Dynamic vs. static analysis

Static analysis

● Abstract domain
● Sound but imprecise
● Slow if precise

Dynamic analysis

● Concrete domain
● Precise but unsound
● Slow if exhaustive

int getValue(int a) {

 return (a % 3) * 2;

}

int x = getValue(7);

Abstract domain

even, odd, anything

Concrete domain

…, -2, -1, 0, 1, 2, ...

What possible value(s) does getValue() return?

