
CSE 403
Software Engineering

Coverage-based Testing

● Coverage-based testing
● In-class exercise: software testing gamification

This week: test adequacy

Structural code coverage: Cobertura

Structural code coverage: Jacoco

https://github.com/rjust/testing-mock

https://github.com/rjust/testing-mock

Code coverage metrics

Structural code coverage: the basics

public double avgAbs(double ... numbers) {

 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("Array numbers must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) {
 sum -= d;
 } else {
 sum += d;
 }
 }

 return sum/numbers.length;
}

Average of the absolute values of an array of doubles

What’s the control flow graph (CFG) for this method?

Structural code coverage: the basics
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Structural code coverage: the basics

public double avgAbs(double ... numbers) {

 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("Array numbers must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) {
 sum -= d;
 } else {
 sum += d;
 }
 }

 return sum/numbers.length;
}

Average of the absolute values of an array of doubles

Statement coverage

● Every statement in the program must be
executed at least once.

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Statement coverage

● Every statement in the program must be
executed at least once.

● Given the control-flow graph (CFG), this is equivalent to
node coverage.

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions (atomic).

● Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

● Example: if (a | b) { … }
■ a and b are conditions.
■ The boolean expression a | b is a decision.

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions (atomic).

● Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

● Example: if (a | b) { … }
■ a and b are conditions.
■ The boolean expression a | b is a decision.

Decision coverage

● Every decision in the program must take on
all possible outcomes (true/false) at least once.

Decision coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Decision coverage

● Every decision in the program must take on
all possible outcomes (true/false) at least once.

● Given the CFG, this is equivalent to edge coverage.

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions (atomic).

● Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with 0 logical connectors is a
condition).

● Example: if (a | b) { … }
■ a and b are conditions.
■ The boolean expression a | b is a decision.

Condition coverage

● Every condition in the program must take on
all possible outcomes (true/false) at least once.

Condition coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Condition coverage

● Every condition in the program must take on
all possible outcomes (true/false) at least once.

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

● Subsumption relationships:
1. Does statement coverage subsume decision coverage?

2. Does decision coverage subsume statement coverage?

3. Does decision coverage subsume condition coverage?

4. Does condition coverage subsume decision coverage?

https://forms.gle/be8GgfACsyFRA26K8

https://forms.gle/be8GgfACsyFRA26K8

Modified Condition/Decision Coverage
(MC/DC)

MCDC: Modified condition and decision coverage

● Every decision in the program must take on
all possible outcomes (true/false) at least once

● Every condition in the program must take on
all possible outcomes (true/false) at least once

● Each condition in a decision has been shown to
independently affect that decision’s outcome.
(A condition is shown to independently affect a decision’s outcome by:
varying just that condition while holding fixed all other possible conditions.)

Required for safety critical systems (DO-178B/C)

MC/DC: an example

if (a | b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

Which tests (combinations of a and b) satisfy MCDC?

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: an example

if (a | b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MCDC is still cheaper than testing all possible combinations.

MC/DC: another example

if (a || b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Why is this example different?

MC/DC: another example

if (a || b)

a b Outcome

0 0 0

0 1 1

1 -- 1

1 -- 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Short-circuiting operators may not evaluate all conditions.

MC/DC: yet another example

if (!a) ... if (a || b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

What about this example?

MC/DC: another example

if (!a) ... if (a || b)

a b Outcome

0 0 0

0 1 1

X X X

X X X

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Not all combinations of conditions may be possible.

MCDC: complex expressions

Provide an MCDC-adequate test suite for:
1. a | b | c

2. a & b & c

https://forms.gle/6otG8qCjBVeVWZpUA

https://forms.gle/6otG8qCjBVeVWZpUA

Structural code coverage: summary

● Code coverage is easy to compute.
● Code coverage has an intuitive interpretation.
● Code coverage in industry: Code coverage at Google
● Code coverage itself is not sufficient!

https://homes.cs.washington.edu/~rjust/publ/google_coverage_fse_2019.pdf

