CSE 403

Software Engineering

Coverage-based Testing

This week: test adequacy

e Coverage-based testing
e In-class exercise: software testing gamification

Structural code coverage: Cobertura

>
VONOUIAWN - Ig

4

N D

H NOOOON

Classes in this File Line Coverage

package avg;
public class Avg {

/*
* Compute the average of the absolute values of an array of doubles
*/
public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;

for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {

sum -= d;
} else {
sum += d;

}
}

return sum/numbers.length;

Structural code coverage: Jacoco

|=m testing-mock > £ cse403.testing.mock.service

cse403.testing.mock.service

Element Missed Instructions+ Cov. Missed Branches Cov.. Missed Cxty Missed Lines Missed Methods Missed Classes
[UserService.java I 100% T 100% 0 4 0 8 0 3 0 1
Total 0of 29 100% 0of2 100% 0 4 0 8 0 3 0 1

|=m testing-mock > £ cse403.testing.mock.service > |- UserService.java

UserService.java

1. package cse403.testing.mock.service;

import cse403.testing.mock.model.User;
import cse403.testing.mock.repository.UserRepository;

6. public class UserService {
private final UserRepository repository;
9 public UserService(UserRepository repository) {
this.repository = repository;
}

public void registerUser(int id, String name) {
User user = new User(id, name);
repository.save(user);

}

public String getUserNameById(int id) {
User user = repository.findById(id);
@ return user != null ? user.getName() : null;

https://qithub.com/rjust/testing-mock

https://github.com/rjust/testing-mock

Code coverage metrics

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 9) {
sum -= d;
} else {
sum += d;
}
}

return sum/numbers.length;

What’s the control flow graph (CFG) for this method?

Structural code coverage: the basics

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit
return sum/a.length

sum += num

true

sum -= num

v

Structural code coverage: the basics

Average of the absolute values of an array of doubles

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;

for (int i=0; i<numbers.length; ++i) {
double d = numbers[i]; e
if (d < 9) {
sum -= d;
} else {
} sum += d, returnsum/a.length} >@

}

sum += num

return sum/numbers.length;

Statement coverage

e Every statement in the program must be
executed at least once.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

return sum/a.length } >@

exit

sum += num

Statement coverage

a==null ||
a.length==

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length @

sum += num

true

sum -= num

v

Statement coverage

e Every statement in the program must be
executed at least once.

e Given the control-flow graph (CFG), this is equivalent to

node coverage.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

»{ Normal
exit

return sum/a.length I

sum += num

Condition coverage vs. decision coverage

Terminology

e Condition: a boolean expression that cannot be decomposed into
simpler boolean expressions (atomic).

e Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with O logical connectors is a
condition).

e Example:if(a|b){...}
m aand b are conditions.
m The boolean expression a | b is a decision.

Condition coverage vs. decision coverage

Terminology

e Decision: a boolean expression that is composed of conditions, using
0 or more logical connectors (a decision with O logical connectors is a

condition).
e Example:if(a|b){...}
m aand b are conditions.
m The boolean expression a | b is a decision.

Decision coverage

e Every decision in the program must take on
all possible outcomes (true/false) at least once.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) S

return sum/a.length } >@

exit

sum += num

Decision coverage

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length @

sum += num

true

sum -= num

v

Decision coverage

e Every decision in the program must take on
all possible outcomes (true/false) at least once.

e Given the CFG, this is equivalent to edge coverage.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

return sum/a.length } :@

exit

sum += num

Condition coverage vs. decision coverage

Terminology

e Condition: a boolean expression that cannot be decomposed into
simpler boolean expressions (atomic).

e Example:if(a|b){...}
m aand b are conditions.
m The boolean expression a | b is a decision.

Condition coverage

e Every condition in the program must take on
all possible outcomes (true/false) at least once.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

return sum/a.length } >@

exit

sum += num

Condition coverage

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length m

sum += num

true

sum -= num

v

Condition coverage

e Every condition in the program must take on
all possible outcomes (true/false) at least once.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

»{ Normal
exit

return sum/a.length }

sum += num

Structural code coverage: subsumption (°

-8
&
&
/

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

e Subsumption relationships:

Does statement coverage subsume decision coverage?
Does decision coverage subsume statement coverage?

Does decision coverage subsume condition coverage?

B~ W Nh o=

Does condition coverage subsume decision coverage?

https://forms.gle/be8GafACsyFRA26K8

https://forms.gle/be8GgfACsyFRA26K8

Modified Condition/Decision Coverage
(MC/DC)

MCDC: Modified condition and decision coverage

e Every decision in the program must take on
all possible outcomes (true/false) at least once

e Every condition in the program must take on
all possible outcomes (true/false) at least once

e Each condition in a decision has been shown to

independently affect that decision’s outcome.

(A condition is shown to independently affect a decision’s outcome by:
varying just that condition while holding fixed all other possible conditions.)

Required for safety critical systems (DO-178B/C)

MC/DC: an example

if (a | b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

Which tests (combinations of a and b) satisfy MCDC?

MC/DC: an example

if (a | b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

MCDC is still cheaper than testing all possible combinations.

MC/DC: another example

if (a || b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

Why is this example different?

MC/DC: another example

if (a || b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 -- 1
1 -- 1

Short-circuiting operators may not evaluate all conditions.

MC/DC: yet another example

if (la) ... if (a || b)

a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

What about this example?

MC/DC: another example

if (la) ... if (a || b)

a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
X
X

Not all combinations of conditions may be possible.

MCDC: complex expressions

Provide an MCDC-adequate test suite for:
1. a | b | c

2. a &b &c

https://forms.gle/60tG8gCiBVeVWZpUA

https://forms.gle/6otG8qCjBVeVWZpUA

Structural code coverage: summary

4

[R e e e e S e S T S >
CLVONOUDAWNHOOVONOUDAWNK S
A NOOON N A

N
w
N

Classes in this File Line Coverage Branch Coverage
100% ' 100%

package avg;
public class Avg {

/*
* Compute the average of the absolute values of an array of doubles
*/
public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {
sum -= d;
} else {
sum += d;
}
}
return sum/numbers.length;

Code coverage is easy to compute.
Code coverage has an intuitive interpretation.
Code coverage in industry: Code coverage at Google

Code coverage itself is not sufficient!

Complexity

6

https://homes.cs.washington.edu/~rjust/publ/google_coverage_fse_2019.pdf

