
CSE 403
Software Engineering

Build systems

● Build systems
○ What is a build system?
○ Best practices
○ Gradle live demo

● Testing and Continuous Integration (CI)

● In-class exercise: Git

This week

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

Which of these tasks should be handled manually?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

Which of these tasks should be handled manually?
NONE!

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

How to automate these tasks?

Orchestrate tasks with a build system!

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What is a build system (build tool)?

A tool for automating software engineering tasks:

Build systems: tasks

Tasks are code!
● Should be checked into version control
● Should be code-reviewed
● Should be tested

Build systems: dependencies between tasks

Example code and corresponding tests:

> ls src/

Lib.java LibTest.java Main.java SystemTest.java

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

What are the dependencies between these tasks?

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

In what order should we run these tasks?

Large projects have thousands of tasks
● Dependencies between tasks form a directed acyclic graph.

Build systems: determining task order

Large projects have thousands of tasks
● Dependencies between tasks form a directed acyclic graph.

Topological sort
● Order nodes such that all dependencies are satisfied
● Implemented by computing indegree

(number of incoming edges) for each node

Build systems: determining task order

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: topological sort

What’s the indegree of each node?

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Build systems: topological sort

Which of these sorts is preferable?

Build systems: examples

gradle

Open-source successor to ant and maven
● Groovy/Kotlin DSL (vs. xml)
● Many defaults for (maven) conventions
● Can query Maven Central for dependency resolution

bazel

Open-source version of Google’s internal build tool (blaze)

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
} explicitly specified dependencies

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
} actual source code (no xml)!

Example task: gradle

In many cases, following conventions and
using built-in tasks is sufficient!

Best practices

● Automate everything (one-step build)!
● Always use a build tool.
● Use CI to build and test your code on every commit.
● Don’t depend on anything that’s not in the build file (hermetic)!
● Don’t break the build!

Live demo: Build systems

Set up:
1. Two clones of the basic-stats repo.
2. Goal: migrate from Ant to Gradle.

Two scenarios:
1. Bad: Breaking the build on main with a non-hermetic build
2. Good: New hermetic build on a branch with reviewed PR

Live demo Part 1: Breaking the build

René breaking the build on main

Collaborator
making a small

change

Live demo Part 2: New hermetic build

● Development on a branch
● Hermetic build
● Backward compatibility
● Testing and code review

