
CSE 403
Software Engineering

Scrum and Teams

• Project proposals
• Proposal submission
• Project registration
• Preference submission

• Scrum

• Working in Teams

Today

Project Proposals

Project proposals: submission
Proposal Submission on Canvas
● Due Tuesday 04/08
● https://canvas.uw.edu/courses/1798606/assignments/10278555

Project registration (Google form)
● Due Tuesday 04/08
● https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_registration.html

The intake form adds your project to a shared spreadsheet
for others to review and follow up with questions.

https://canvas.uw.edu/courses/1798606/assignments/10278555
https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_registration.html

Project proposals: review
Project review (Summary spreadsheet)
● Wednesday — Friday
● Read proposals, watch pitches, ask questions
● https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_summary.html

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_summary.html

Project review (Summary spreadsheet)
● Due Friday 04/11 at 2pm
● Indicate preferences for at least 5 projects
● Submit individual preferences OR group preferences

● Individual preferences
https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_preferences_individual.html

● Group preferences
https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_preferences_group.html

Project proposals: preferences

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_preferences_individual.html
https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project_preferences_group.html

Scrum

Heart of agile [Cockburn]

Scrum: overview

Scrum: overview
Small number of team members: 6 (+/- 2)
A time-boxed model:
● Each Sprint (time box): max 30 days

● Fixed number of tasks for each Sprint

● Daily Scrum meeting: 15 min max

● Each sprint results in a

○ Sprint review (product demo): 0.5-1 hour

○ Sprint retrospective (post-mortem): 1-3 hours

Scrum: overview

Prioritization: Must have vs. Should have vs. Could have vs. Won’t have

Scrum: roles

Product owner
(Customer)

Scrum master
(Manager/Moderator)

Scrum team
(Tech experts)

Scrum: activities and planning

Daily scrum meeting (15min):
● What did I do since the last meeting?
● Any obstacles or blocking issues?
● What will I do until the next meeting?

Scrum: sprint retrospective

Who and what?
● Product owner, scrum master, and scrum team.
● Reflect, change, improve

Stop doing

Continue doing

Start doing

Scrum: summary

Working in Teams

Seriously, working in teams can be great!
Benefits

○ Attack bigger problems in a short period of time
○ Utilize the collective experience of everyone

Risks
○ Communication and coordination issues
○ Lack of planning, reflection, improvement
○ Conflict or mistrust between team members

Big questions

● Communication: How will everyone communicate?

● Decisions: How will your team make decisions?

● Structure: How do you divide your team into subgroups?

Big questions

● Communication: How will everyone communicate?

● Decisions: How will your team make decisions?

● Structure: How do you divide your team into subgroups?

● Communication requirements increase with increasing
numbers of people (everybody to everybody: quadratic cost)

● Every attempt to communicate is a chance to miscommunicate

● Not communicating will guarantee miscommunication

Communication: powerful but maybe costly

"Hey X, I was wondering whether you finished the Y feature you were assigned?
Since we were late on some features last time, I thought I’d check.
When you have time, can you please tell me when Y is done. Thanks, Z."

What do you think about this email?

Communication: example

"Hey X, I was wondering whether you finished the Y feature you were assigned?
Since we were late on some features last time, I thought I’d check.
When you have time, can you please tell me when Y is done. Thanks, Z."

Communication: example

Be quantitative and specific:
● Use specific, incremental goals, not just things must be "done".
● List specific dates for when results are expected.
● State requests in a communication explicitly.
● State an expected date/time for a reply to a communication.
● Remind about upcoming deadlines, meetings, key points.

● Don't be accusatory; offer support and gratitude as appropriate.

Communication: example
"Hey X, I was wondering whether you finished the Y feature you were assigned? Since we
were late on some features last time, I thought I’d check. When you have time, can you
please tell me when Y is done. Thanks, Z."
A possibly better email:
"Hey X, how is your work on Y going?

It's due a week from Friday. Like we talked about at our last meeting, we are hoping to
have the first 2 (out of 3) features designed by Sunday so we can review them together.

Please let me know by tomorrow night how much progress you made on Y. If you have
any questions or need some help along the way, please let me know.

We'll all meet Saturday in person and you can give us another update at that time.
Thanks, Z."

Big questions

● Communication: How will everyone communicate?

● Decisions: How will your team make decisions?

● Structure: How do you divide your team into subgroups?

Who makes important product-wide decisions?
● One person?
● All by unanimous consent?
● Other options?

● Is this an unspoken or an explicit agreement?

Leadership and high-impact decisions

● Document, Plan, Prioritize
○ Know what the real problem is!

● Delegate to subteams when possible
● Let everyone give their input (even if some is off-track)
● Write down pros/cons of alternatives

○ Evaluate cost/benefit/risks.
○ How long will it take? How much to learn? etc.

● Have a clear procedure for resolving disagreement
○ Strive for consensus, but if it cannot be achieved, ...
○ Majority vote and PM decides on a tie, etc.

Making decisions

Big questions

● Communication: How will everyone communicate?

● Decisions: How will your team make decisions?

● Structure: How do you divide your team into subgroups?

The following could be all different team members, or some
members could span multiple roles:
● Project management
● Functional management
● Designers/architects
● Developers: programmers, testers, integrators
● Lead developer (“tech lead”)

Key: Identify and stress roles and responsibilities

Common SW team responsibilities

Dominion model
● Pros:

○ clear chain of responsibility
○ very familiar model

● Cons:
○ single point of failure at the top
○ little or no sense of ownership by everyone

Team structure models: dominion

Communion model
● Pros:

○ a community of leaders, each in their own domain
○ inherent sense of ownership

● Cons:
○ miscommunication, competing visions, dropped responsibilities
○ many points of partial failure

Team structure models: communion

