
CSE 403
Software Engineering

Software development life cycle

• Project proposals
• Elevator pitches

• Software Development Life Cycle (SDLC)
• What is it and why is it needed
• Recurring themes and stages
• Popular SDLC models and their tradeoffs

Today

Project Proposal Pitches
Elevator pitch: a brief, persuasive speech to spark interest in a product, project or idea.

An elevator pitch is short, about the time you spend in an elevator, hence the name.

https://asana.com/resources/elevator-pitch-examples

You have 2.5 min for 
your project pitch 
to the class! 

This is an example 
of how it could 
flow.

Assignment 1: Project proposals



You have 2-3 
minutes for 
your project 
pitch to the 
class - this is a 
good example 
of how it could 
flow

Independently create two pitches with your proposal partner, then iterate and consolidate.

Introduce yourself

Present the problem

Present your solution 
(This is your lucky day!)

Share your value proposition

Add a call to action

Proposal pitch template

Another option to creating a pitch:
Write a mock product press release!

Includes
• A catchy headline
• Problem trying to solve
• Value proposition
• How differs from competitors
• Release timing and teaser of future beyond release
• Quotes from well known users showing their delight

Great way to show the vision and get buy in

You have 2-3 
minutes for your 
project pitch to 
the class - this is 
a good example 
of how it could 
flow

https://jdmeier.com/how-to-create-innovative-disruption-with-mock-press-releases/ 

https://www.linkedin.com/pulse/working-backwards-press-release-template-exa
mple-ian-mcallister 

See:

Mock product press release

You have 2-3 
minutes for your 
project pitch to 
the class - this is 
a good example 
of how it could 
flow

SDLC: Software Development Life Cycle



Problem Specification

???

Source Code Solution

SDLC: Here’s the challenge

Specification 
(maybe)

Deliver
(maybe)

One solution: Ad-hoc code and fix

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly
• Applicable sometimes for small projects, short-lived prototypes, and/or small teams

Cons:
• Do you see any downsides to this approach? 
• Challenging to manage multiple developers – how synchronize your work
• Harder to accommodate changes without a major design overhaul
• Unclear delivery of features (scope), timing, and support

SDLC: Code and fix

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly
• Applicable sometimes for small projects, short-lived prototypes, and/or small teams

Cons:
• No way to assess progress, quality or risks
• Challenging to manage multiple developers – how synchronize your work
• Harder to accommodate changes without a major design overhaul
• Unclear delivery of features (scope), timing, and support

SDLC: Code and fix



The Power of Process | Steve McConnell

Projects with little attention on SDLC process

Thrashing:
Doing a lot of work but not making progress towards 
the actual goal!

Let’s look at data

The Power of Process | Steve McConnell

Projects with little attention on SDLC process Projects with early attention to SDLC process

Let’s look at data

The software development life cycle (SDLC)
SDLC: produce software through a series of stages
● From conception to end-of-life.
● Can take months or years to complete.

Goals of each stage
● Define a clear set of steps to perform.
● Produce a tangible item.
● Allow for review of work.
● Specify actions to perform in the next stage.

Life-cycle stages
Virtually all SDLC models have the following stages
● Requirements
● Design
● Implementation
● Testing
● Maintenance

Key questions:
● How to combine the stages and in what order?
● How does this differ for traditional vs. agile models?



Major SDLC models
Traditional models
● Waterfall model
● Prototyping
● Spiral model
● ...

Agile models
● XP (Extreme Programming)
● Scrum
● ...

All models have the same goals:
manage risks and

produce high quality software.

Traditional SDLC models

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Conceptually very clean,
but what is missing?

SDLC: Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: Waterfall model

In what contexts does
this model work?



21

Likely parts of their SDLC is 
waterfall-like due to the upfront 
and regulated requirements

SDLC: Waterfall model pros and cons

Pros
● Easy-to-follow, sequential model.
● Reviews ensure readiness to advance.
● Works well for well-defined projects (requirements are clear).

Cons
● Hard to do all the planning upfront.
● Final product may not match the client’s needs.
● Step reviews require significant effort.

SDLC: Prototyping
● Bottom-up approach.
● Problem domain or requirements

not well defined or understood.
● Create small implementations of

requirements that are least understood. 
● Requirements are “explored” before the

product is fully developed.
● Developers gain experience when developing

the “real” product.

Prototype Review

Refine

In what contexts does this model work?

https://internetdevels.com/blog/what-is-website-prototype-how-build-
website-prototype 

https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-desktop 

UI prototyping 
is popular



SDLC: Prototyping pros and cons

Pros
● Client involvement and early feedback.
● Improves requirements and specifications.
● Reduces risk of developing the “wrong” product.

Cons
● Time/cost for developing a prototype may be high.
● Focus may be too narrow (no thinking outside the box).

SDLC: Spiral model
● Incremental/iterative model (combines the waterfall model and prototyping).
● Iterations called spirals.
● Activity centered:

○ Planning
○ Risk analysis
○ Engineering
○ Evaluation

● Phased reduction of risks
(address high risks early).

 Boehm, Spiral Development: Experience, Principles,and Refinements

SDLC: Spiral model importance

A precursor to agile models:
Software development is based on iteration,
using “risk reduction” as a criterion to
prioritize activities at each iteration

 Boehm, Spiral Development: Experience, Principles,and Refinements

SDLC: Spiral model pros and cons

Pros
● Early indication of unforeseen problems.
● Allows for changes.
● The risk reduces as costs increase.

Cons
● More complex to implement and run.
● Requires proper risk assessment.
● Requires a lot of planning and experienced management.



Agile SDLC models

SDLC: Agile models

Agile Manifesto (http://agilemanifesto.org/):
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan.

SDLC: Agile models
Basics
● Maintain simplicity.
● Team members choose their own methods, tools etc.
● Continuous customer involvement.
● Expect requirements to change,

focus on incremental delivery.
● Improve communication.

SDLC: Extreme Programming (XP)
Extreme Programming (XP)
● New versions may be built several times per day

with products delivered to customers weekly.

● All tests must be run and pass for every build
(may be combined with test-driven development).

● Adaptation and re-prioritization of requirements.

● Pair programming and continuous code review.



SDLC: Agile models pros and cons

Pros
● Flexibility (changes are expected).
● Focus on quality (continuous testing).
● Focus on communication.

Cons
● Requires experienced management and highly skilled developers.
● Prioritizing requirements can be difficult when there are many stakeholders.
● Best for small to medium (sub) projects.

What is the best SDLC model?

Choices are good ☺!
• The choice depends on the project context and requirements
• All models have the same goals:

manage risks and produce high quality software
•All models involve the same general activities and stages

(e.g., specification, design, implementation, and testing) and 
can be tailored

• Today’s models focus on customer feedback and the ability to 
adapt to changing requirements

Why are there so many SDLC models? What model would you choose and why?
● A control system for anti-lock braking in a car.

● A hospital accounting system that replaces an existing one.

● An interactive system that allows airline passengers to quickly 
find replacement flights (for missed or bumped reservations) 
from airport terminals or a mobile app.

● A new web app for AI-based Q&A about recorded videos. 


