
CSE 403
Software Engineering

Spring 2025

Course introduction

Today

● The CSE 403 team
● Logistics and resources
● What is Software Engineering
● Course overview and expectations

The CSE 403 team
Instructor
● René Just (rjust@cs.washington.edu)
● Office hours: After class and by appointment

Teaching assistants/project managers
● Afuza Afuzarahman
● Arnavi Mahendra Chheda
● Medha Gupta
● Melanie Kneitmix
● Connor Nicholas Reinholdtsen
● David Song

mailto:rjust@cs.washington.edu

Logistics: meetings

● Lectures: M/W/F 12:30pm – 1:20pm (G10)

● Team meetings: Tue 1:30pm – 2:20pm (G10)

● Project meetings: Thu 1:30pm – 2:20pm (G10)

Until 04/08 use Tue/Thu time to work on your
project proposal with your assigned partner.

Logistics: resources

● Course website:
https://homes.cs.washington.edu/~rjust/courses/CSE403 (cs.uw.edu/403)

● Submission of assignments via Canvas:
https://canvas.uw.edu

● Project discussions on Slack:
https://cse403-sp25.slack.com

https://homes.cs.washington.edu/~rjust/courses/CSE403
https://cs.uw.edu/403
https://canvas.uw.edu
https://cse403-sp25.slack.com

Logistics: communication

Communication guidelines
● We use Slack for all non-sensitive project communication.
● See the Slack guidelines for this course.

Resources
● The go-to page for this course is the course web site.

● All relevant information is on the website, or linked from it.

● Canvas for assignments and non-public materials.

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/slack_rules.html
https://homes.cs.washington.edu/~rjust/courses/CSE403/index.html

Today

● The CSE 403 team
● Logistics and Background
● What is Software Engineering
● Course overview and expectations

What is Software Engineering?

● Developing in an IDE
and software ecosystem?

● Debugging and maintaining a software system?

● Deploying and running
a software system?

● Empirically evaluating a software system?

● Writing (design) docs?

All of the above and much more!

What is Software Engineering?

More than just writing code
The complete process of specifying, designing, developing,
analyzing, deploying, and maintaining a software system.

● Common Software Engineering tasks include:
○ Requirements engineering
○ Specification writing and documentation
○ Software architecture and design
○ Programming Just one out of many important tasks!
○ Software testing and debugging
○ Maintenance and refactoring

Why is Software Engineering important?

Software is eating the world!

Why is Software Engineering important?

Software is eating the world!

Summary: Software Engineering

What is Software Engineering?
● The complete process of specifying, designing,

developing, analyzing, and maintaining a software system.

Why is it important?
● Decomposes a complex engineering problem.
● Organizes processes and effort.
● Improves software reliability.
● Improves developer productivity.

Does GenAI render Software Engineering obsolete?

(Engineering workflow at Microsoft, Big Code summit 2019)

The Role of Software Engineering in Practice

Intro-level
courses focus on

the inner loop.

CSE 403 largely focuses on the outer loop.

Today

● The CSE 403 team
● Logistics and Background
● What is Software Engineering
● Course overview and expectations

Course overview: grading
Grading
● 55%: Course project

○ 70% project milestones
○ 30% final project review

● 35%: In-class exercises and
 individual assignments

● 10%: Participation
○ Engagement in project meetings
○ In-class discussions and activities

(polls, small-group activities, etc.)
○ Slack contributions

● No final exam!

Course overview: workload
Grading
● 55%: Course project
● 35%: In-class exercises and

 individual assignments
● 10%: Participation
● No final exam!

Workload
● One project assignment each week

Course overview: workload
Grading
● 55%: Course project
● 35%: In-class exercises and

 individual assignments
● 10%: Participation
● No final exam!

Workload
● One project assignment each week
● 5 (+1 optional) in-class exercises

Course overview: workload
Grading
● 55%: Course project
● 35%: In-class exercises and

 individual assignments
● 10%: Participation
● No final exam!

Workload
● One project assignment each week
● 5 (+1 optional) in-class exercises
● Extra time allocated for crunch time

Course overview: topics
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).

Course overview: topics
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).

● Software development
○ Decompose a complex problem and build

abstractions.
○ Improve your coding skills.
○ Effectively use version control, build systems,

and code review.
○ Continuous integration (CI).

Course overview: topics
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).

● Software development
○ Decompose a complex problem and build

abstractions.
○ Improve your coding skills.
○ Effectively use version control, build systems,

and code review.
○ Continuous integration (CI).

● Software testing and debugging
○ Write effective (unit) tests.
○ Hands-on experience, using testing and

debugging techniques.
○ (Advanced) program analysis.

Course overview: course project
● Software processes, requirements,

and specification
○ Different software development processes.
○ Precise writing (requirements and

specifications).

● Software development
○ Decompose a complex problem and build

abstractions.
○ Improve your coding skills.
○ Effectively use version control, build systems,

and code review.
○ Continuous integration (CI).

● Software testing and debugging
○ Write effective (unit) tests.
○ Hands-on experience, using testing and

debugging techniques.
○ (Advanced) program analysis.

● Course project
○ Apply all of the above in a group project.

Course project overview

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/project.html

Course project proposals

https://homes.cs.washington.edu/~rjust/courses/CSE403/project/01_proposal.html

Course project categories

Example categories
● Productivity and convenience apps
● Optimization problems and data science
● Gaming and making
● Extensions to open-source software
● Software Engineering research (prototypes)

CSE 403 in one picture: mostly type II fun

Sweet spot for teaching

Expectations

● Programming experience and familiarity with one
programming language (Java, C++, ...).

● Active participation in discussions.

● Teamwork and communication (Slack).

● Reflecting on and improving submitted materials.

CSE 403: challenges for students

Team work
● Effective communication and coordination
● Different backgrounds, skills, and incentives

Complexity
● Tooling and technology stacks
● Scale of code base

Uncertainty
● No simple check-box grading
● Focus on trade-offs, decisions, and justifications

CSE 403: challenges for students and staff
The Week-1 rush Lecture time (12:30)

Enrollment
● 2020: 40 students (2 TAs)
● 2021: 85 students (5 TAs)
● 2022: 110 students (6 TAs)
● 2023: 82 students (5 TAs)
● 2025: 100 students (6 TAs)

Time
● Project duration: 9 weeks
● Lecture time: 50 minutes
● Quick turnaround times

(milestones and grading)

What’s next?

● Tue: Work on project proposal (pre-assigned groups)

● Wed: The Joel Test (or why you really should take 403)

● Thu: Work on project proposal (pre-assigned groups)

● Fri: SDLC: Software Development Life Cycle

