CSE 403 Software
Engineering

Integration Testing



Back to our four categories of testing

1. Unit Testing
* Does each module do what it is supposed to do in isolation?

2. Integration Testing
* Do you get the expected results when the parts are put together?

3. Validation Testing
* Does the program satisfy the requirements?

4. System Testing

* Does the program work as a whole and within the overall environment?
(includes full integration, performance, scale, etc.)



Start with “integration”

Integration: combining 2 or more software units

Why do we care about integration?
* New problems will inevitably surface

* Many modules are now together that have never been
together before

* If done poorly, all problems will present themselves at once
* This can be hard to diagnose, debug, fix

* There can be a cascade of interdependencies
* Cannot find and solve problems one-at-a-time



Phased (“big-bang”) integration

- Design, code, test, debug each class/unit/subsystem separately
» Combine them all ("phased” is a misnomer)
» Hope for the best



https://www.wired.it/scienza/lab/2018/04/05/fine-mondo-big-bang/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Incremental integration

* Repeat:
* Design, code, test, debug a new component

* Integrate this component with another (a
larger part of the system)

* Test the combination

e Start with a skeleton system (e.g., zero feature
release)

* Incrementally flesh it out

What are the pros and cons?



Incremental integration: pros and cons

*Incremental integration benefits:
* Errors easier to isolate, find, fix
* reduces developer bug-fixing load
* System is always in a (relatively) working state
* good for customer & developer morale

* Incremental integration challenges:

* Need to create “stub” or “mock” versions of features that aren’t yet
available

Types of incremental integration:
Bottom-up, top-down, and sandwich



Bottom-up integration

Start with low-level data/logic layers and work outward

 Must write tests (a.k.a. upper level stubs) to drive these layers
* Won't discover high-level / Ul design flaws until late

2 K 72 . )
K

IP

]

)
!
hill,
:
i




Top-down integration

Start with outer Ul layers and work inward

 Must write (lots of) mocks (a.k.a. lower level stubs) for Ul to interact with
* Allows postponing tough design/implementation decisions (good or bad?)

This may be
Start 5 necessary for
C | your beta release
Y v
—— [
v v v v

Finish <->

Steve McConnel, Code Complete 2



https://github.com/media-lib/prog_lib/blob/master/general/Steve%20McConnell%20-%20Code%20Complete%20(2nd%20edition).pdf

“Sandwich" integration

Sandwich integration fleshes out a skeleton system:

Connect top-level Ul with important bottom-level components

* Add middle layers incrementally

* Pragmatic, agile approach Consider starting
your project with

* Need to make decisions in a principled way!

a skeleton
S tart implementation
Finish "
1nis //?
v V7 I
i e -
l 4
= e
\| )




What's a mock?

Mock: a controllable replacement for a software unit
e Simulates components not yet developed

e Simulates difficult-to-control elements
o network / internet

database

files

physical components

expensive components

o O O O



Integration testing

Integration testing: testing 2+ modules together

Challenging!

* Combined units can fail in more places and in more complicated ways

* Must use mocks or stubs
* to simulate behavior if not all pieces yet exist, OR

* to reduce scope of debugging

Suppose class A depends on class B, which is not yet written.
To test class A, we need a mock implementation of B.



How to create a mock, step 1

1.

Identify the dependency

A resource/class/object that is challenging or not yet written

a)
b)

If it isn't an object, wrap it up into one

+methodThatUsesX ()

Resource X
-yummyData —
+ flakyBehavior()

+methodThatUsesB ()

+ doStuffWithX()

Resource X
-yummyData
+ flakyBehavior

Goal: Test class A

Create Class B to represent

the challenging/missing
dependency (as needed)

Class A depends on Class B



How to create a mock, step 2

2. Create an interface that expresses
the core functionality of the object
e Class Ano longer knows about Class B,
only InterfaceB
e Every B object also has type InterfaceB

Create a stub InterfaceB based on B

Update A's code to work with type
InterfaceB, not B

A
+ methodThatUsesB ()
«interface»
InterfaceB
+ doStuffwithX()
L
B ] . .
Original B
+ doStuffwithX()
Resource X
-yummyData

+ flakyBehavior

2]
— interface




How to create a mock, step 3

3.

Write a second "stub” class that also
implements the interface

® |t may return pre-determined fake data
o Crashes if called on unexpected data
e It may be a simple-to-verity, inefficient

implementation

Now A's dependency on B is
dodged and can be tested easily

Can focus on how well A
integrates with B's expected
behavior

A
+ methodThatUsesB ()
«interface» B
InterfaceB .
— interface
+ doStuffwithX()
¢ —
B StubB
-fakeData
+ doStuffWithX() + doStuffwithX()
Resource X
-yummyData

+ flakyBehavior

Stub



Use the mock, step 4

Goal: At test time, Class A uses the stub: in the field, Class A uses the

real implementation
Good design: minimize code changes between using and not using

the stub
What does the client of the mock look like? (Hint: how did A use B?)



Use the mock, step 4

Goal: At test time, Class A uses the stub: in the field, Class A uses the

real implementation
Good design: minimize code changes between using and not using

the stub

What does the client of the mock look like? (Hint: how did A use B?)
e At construction
a = new A( new MockB() );

e Through a getter/setter method J——
a.setResource( new MockB() ); hard-coding
e Just before usage, as a parameter

a.methodThatUsesB( new MockB() );

Also known as “dependency injection”: the dependency is provided
(“injected”), rather than the client creating it



The factory design pattern

A “factory” creates objects
Like Java's “new MyClass(...)", which has two problems:

. “neW"
o Sometimes you want to return an existing object
o Caches, immutable objects

e "MyClass(...)
o Sometimes you want to return an object of a subclass
o More specific behavior (example: a mock)

An instance factory method: InterfaceB.create(...)
How to obtain the right subclass of B?

17



Injection

Injection supplies an implementation for a client to use
o Based on a configuration (file, argument, etc.)

Example:

o Read class name from a file
o Reflectively instantiate the class
o Use the instance (= object)

18



Digression: reflection

Reflection = introspection = meta-programming

Examine and manipulate objects,
without knowing their type at compile time

19



Call a method if it exists

Object obj = ...; obj.methodName()

try {
Class<?> clazz = obj.getClass();

Method method = clazz.getDeclaredMethod("methodName");
method.invoke(obj);

} catch (NoSuchMethodException e) {
// the method does not exist

20



Create an object

new MyClass()

Class<?> clazz Class.forName("com.example.MyClass");
Constructor<?> constructor = clazz.getDeclaredConstructor();
Object instance = constructor.newInstance();

// Now "1instance  holds a new object of MyClass

21



Access a private field

MyClass myObject = ...; myObject.privateField

Class<?> myClass = myObject.getClass();

Field myField = myClass.getDeclaredField("privateField");
myField.setAccessible(true);

String currentValue = (String) myField.get(myObject);

myObject.privateField = "new value”

privateField.set(myObject, "new value");

22



Uses for reflection

Backward compatibility

Access internal features

Dependency injection (configuration, testing)
Tools: debuggers, serialization

Obfuscation

23



Testing takeaways

* Testing matters!!!

* Test early, test often

* Bugs become well-hidden beyond the unit in
which they occur

 Don't confuse volume with quality of test data

e Can lose relevant cases in mass of irrelevant
ones

* Look for revealing subdomains (“characteristic
tests”)

* Choose test data to cover:
* Specification (black box testing)
* Code (white box testing)

* Testing can't prove absence of bugs
* It can increase quality and confidence



Appendix - Mock objects for integration testing

Mock objects
Mock vs stub objects

Thanks to Marty Stepp, previous UW CSE 403 instructor, for providing this
and an earlier version of the integration testing material

25



"Mock" objects

mock object: a fake object that decides whether a unit test has
passed or failed by watching interactions between objects

« useful for interaction testing (as opposed to state testing)




Stubs vs. mocks

* A stub gives out data that goes to
the object/class under test.

* The unit test directly asserts against
class under test, to make sure it gives
the right result when fed this data.

* A mock waits to be called by
the class under test (A).

* Maybe it has several methods
it expects that A should call.

* It makes sure that it was contacted
in exactly the right way.

A

StubB

-fakeData

+ behavior(b : InterfaceB)

assert

UnitTestA

+test1()
+test2()

A

method1(), ...

MockB

-wasCalledProperly? : boolean

+ hehavior(b : InterfaceB)

* If Alinteracts with B the way it should, the test passes.

+ method1()
+ method2()
+method3()

construct, assert

UnitTestA

+test1()
+test2()




Mock object frameworks

» Stubs are often best created by hand/IDE.
Mocks are tedious to create manually.

* Mock object frameworks help with the process.

* android-mock, EasyMock, jMock (Java)
* FlexMock / Mocha (Ruby) :
* SimpleTest / PHPUnit (PHP) ]MOCk

* Frameworks provide the following:
* auto-generation of mock objects that implement a given interface
* logging of what calls are performed on the mock objects
* methods/primitives for declaring and asserting your expectations



Using stubs/mocks together

* Suppose a log analyzer reads from a web service.
If the web fails to log an error, the analyzer must send email.
* How to test to ensure that this behavior is occurring?

*Set up a stub for the web service that intentionally fails.

*Set up a mock for the email service th=* ~hecletn conuhather

th e a n 3 n d a n e l I LogError(string) StubWebService
LogError(stri Web service
LogAnalyzer
LogAnalyzer
N SendEmail() MockEmailSender

.




