
CSE 403 Software
Engineering
Integration Testing

Back to our four categories of testing

1. Unit Testing
• Does each module do what it is supposed to do in isolation?

2. Integration Testing
• Do you get the expected results when the parts are put together?

3. Validation Testing
• Does the program satisfy the requirements?

4. System Testing
• Does the program work as a whole and within the overall environment?

(includes full integration, performance, scale, etc.)

Start with “integration”

Integration: combining 2 or more software units

Why do we care about integration?
• New problems will inevitably surface

• Many modules are now together that have never been
together before

• If done poorly, all problems will present themselves at once
• This can be hard to diagnose, debug, fix

• There can be a cascade of interdependencies
• Cannot find and solve problems one-at-a-time

Phased (“big-bang”) integration

• Design, code, test, debug each class/unit/subsystem separately
• Combine them all (“phased” is a misnomer)
• Hope for the best

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://www.wired.it/scienza/lab/2018/04/05/fine-mondo-big-bang/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Incremental integration

• Repeat:
• Design, code, test, debug a new component
• Integrate this component with another (a

larger part of the system)
• Test the combination

• Start with a skeleton system (e.g., zero feature
release)
• Incrementally flesh it out

What are the pros and cons?

Incremental integration: pros and cons

• Incremental integration benefits:
• Errors easier to isolate, find, fix

• reduces developer bug-fixing load
• System is always in a (relatively) working state

• good for customer & developer morale

• Incremental integration challenges:
• Need to create “stub” or “mock” versions of features that aren’t yet

available

Types of incremental integration:
Bottom-up, top-down, and sandwich

Bottom-up integration

Start with low-level data/logic layers and work outward

• Must write tests (a.k.a. upper level stubs) to drive these layers
• Won't discover high-level / UI design flaws until late

Top-down integration

Start with outer UI layers and work inward

• Must write (lots of) mocks (a.k.a. lower level stubs) for UI to interact with
• Allows postponing tough design/implementation decisions (good or bad?)

Steve McConnel, Code Complete 2

This may be
necessary for
your beta release

https://github.com/media-lib/prog_lib/blob/master/general/Steve%20McConnell%20-%20Code%20Complete%20(2nd%20edition).pdf

“Sandwich" integration

Sandwich integration fleshes out a skeleton system:

Connect top-level UI with important bottom-level components

• Add middle layers incrementally
• Pragmatic, agile approach
• Need to make decisions in a principled way!

Consider starting
your project with
a skeleton
implementation

What’s a mock?

Mock: a controllable replacement for a software unit

● Simulates components not yet developed

● Simulates difficult-to-control elements
○ network / internet
○ database
○ files
○ physical components
○ expensive components

Mock it in
Mock it out

Integration testing

Integration testing: testing 2+ modules together

Challenging!
• Combined units can fail in more places and in more complicated ways
• Must use mocks or stubs

• to simulate behavior if not all pieces yet exist, OR
• to reduce scope of debugging

Suppose class A depends on class B, which is not yet written.
To test class A, we need a mock implementation of B.

How to create a mock, step 1
1. Identify the dependency

a) A resource/class/object that is challenging or not yet written
b) If it isn't an object, wrap it up into one

Goal: Test class A

Create Class B to represent
the challenging/missing
dependency (as needed)

Class A depends on Class B

How to create a mock, step 2

2. Create an interface that expresses
the core functionality of the object
● Class A no longer knows about Class B,

only InterfaceB
● Every B object also has type InterfaceB

Create a stub InterfaceB based on B

Update A's code to work with type
InterfaceB, not B

B
interface

Original B

How to create a mock, step 3

Now A's dependency on B is
dodged and can be tested easily

Can focus on how well A
integrates with B's expected
behavior

Stub

B
interface

3. Write a second "stub" class that also
implements the interface
● It may return pre-determined fake data

○ Crashes if called on unexpected data
● It may be a simple-to-verify, inefficient

implementation

Use the mock, step 4

Goal: At test time, Class A uses the stub; in the field, Class A uses the
real implementation
Good design: minimize code changes between using and not using
the stub

What does the client of the mock look like? (Hint: how did A use B?)
● At construction

apple = new A(new StubB());
● Through a getter/setter method

apple.setResource(new StubB());
● Just before usage, as a parameter

apple.methodThatUsesB(new StubB());

Also known as “dependency injection”: the dependency is provided
(“injected”), rather than the client creating it

Unacceptable
hard-coding

Use the mock, step 4

Goal: At test time, Class A uses the stub; in the field, Class A uses the
real implementation
Good design: minimize code changes between using and not using
the stub

What does the client of the mock look like? (Hint: how did A use B?)
● At construction

a = new A(new MockB());
● Through a getter/setter method

a.setResource(new MockB());
● Just before usage, as a parameter

a.methodThatUsesB(new MockB());

Also known as “dependency injection”: the dependency is provided
(“injected”), rather than the client creating it

The factory design pattern

A “factory” creates objects

Like Java’s “new MyClass(...)”, which has two problems:

● “new”
○ Sometimes you want to return an existing object
○ Caches, immutable objects

● “MyClass(...)”
○ Sometimes you want to return an object of a subclass
○ More specific behavior (example: a mock)

An instance factory method: InterfaceB.create(...)

How to obtain the right subclass of B?

17

Injection

18

Injection supplies an implementation for a client to use
○ Based on a configuration (file, argument, etc.)

Example:
○ Read class name from a file
○ Reflectively instantiate the class
○ Use the instance (= object)

Digression: reflection

Reflection = introspection = meta-programming

Examine and manipulate objects,
without knowing their type at compile time

19

Call a method if it exists

Object obj = …;

try {
 Class<?> clazz = obj.getClass();

 Method method = clazz.getDeclaredMethod("methodName");

 method.invoke(obj);

} catch (NoSuchMethodException e) {

 // the method does not exist

}

20

obj.methodName()

Create an object

Class<?> clazz = Class.forName("com.example.MyClass");

Constructor<?> constructor = clazz.getDeclaredConstructor();

Object instance = constructor.newInstance();

// Now `instance` holds a new object of MyClass

21

new MyClass()

Access a private field

MyClass myObject = …;

Class<?> myClass = myObject.getClass();

Field myField = myClass.getDeclaredField("privateField");

myField.setAccessible(true);

String currentValue = (String) myField.get(myObject);

privateField.set(myObject, "new value");

22

myObject.privateField

myObject.privateField = "new value"

Uses for reflection

● Backward compatibility
● Access internal features
● Dependency injection (configuration, testing)
● Tools: debuggers, serialization
● Obfuscation

23

Testing takeaways
• Testing matters!!!

• Test early, test often
• Bugs become well-hidden beyond the unit in

which they occur

• Don't confuse volume with quality of test data
• Can lose relevant cases in mass of irrelevant

ones
• Look for revealing subdomains (“characteristic

tests”)

• Choose test data to cover:
• Specification (black box testing)
• Code (white box testing)

• Testing can't prove absence of bugs
• It can increase quality and confidence

Appendix – Mock objects for integration testing

25

Mock objects
Mock vs stub objects

Thanks to Marty Stepp, previous UW CSE 403 instructor, for providing this
and an earlier version of the integration testing material

"Mock" objects

mock object: a fake object that decides whether a unit test has
passed or failed by watching interactions between objects

• useful for interaction testing (as opposed to state testing)

Stubs vs. mocks

• A stub gives out data that goes to
the object/class under test.

• The unit test directly asserts against
class under test, to make sure it gives
the right result when fed this data.

• A mock waits to be called by
the class under test (A).
• Maybe it has several methods

it expects that A should call.

• It makes sure that it was contacted
in exactly the right way.
• If A interacts with B the way it should, the test passes.

Mock object frameworks

• Stubs are often best created by hand/IDE.
Mocks are tedious to create manually.

•Mock object frameworks help with the process.
• android-mock, EasyMock, jMock (Java)
• FlexMock / Mocha (Ruby)
• SimpleTest / PHPUnit (PHP)
• ...

• Frameworks provide the following:
• auto-generation of mock objects that implement a given interface
• logging of what calls are performed on the mock objects
• methods/primitives for declaring and asserting your expectations

Using stubs/mocks together

•Suppose a log analyzer reads from a web service.
If the web fails to log an error, the analyzer must send email.
• How to test to ensure that this behavior is occurring?

•Set up a stub for the web service that intentionally fails.

•Set up a mock for the email service that checks to see whether
the analyzer contacts it to send an email message.

