CSE 403

Software Engineering

Coverage-based testing
and mutation testing

Code coverage: example

Average of the absolute values of an array of doubles

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {
sum -= d;
} else {
sum += d;
}
}

return sum/numbers.length;

\}\

https://qithub.com/rjust/testing-ci-gradle

https://github.com/rjust/testing-ci-gradle

Line coverage

Classes in this File Line Coverage Branch Coverage

package avg;
public class Avg {

/*
* Compute the average of the absolute values of an array of doubles
*/
public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty

- >
cLvONOUAWNKR S
D

4 if (numbers == null || numbers.length == 0) {
1818 52, throw new IllegalArgumentException("Array numbers must not be null or empty!");
12 }
13
14 2 double sum = 0;
15 8 for (int i=0; i<numbers.length; ++i) {
16 6 double d = numbers[i];
17 6 if (d < 0) {
18 2 sum -= d;
19 } else {
20 4 sum += d;
21 }
22 }
23 2 return sum/numbers.length;
24 }
25 }

100% [EEEI0/0N 100% [EES/BNNTT

(Cobertura’s Code coverage report.)

https://qithub.com/rjust/testing-ci-gradle

https://github.com/rjust/testing-ci-gradle

What is the point of code coverage metrics?

Examples of metrics:

e Statement coverage
Branch coverage
Path coverage
Mutant coverage

Example code coverage metrics

Beyond line coverage

public double avgAbs(double ... numbers) {

// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == @) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {
sum -= d;
} else {
sum += d;
}
}

return sum/numbers.length;

\}\

Another representation: the control flow graph (CFG)

Control flow graph (CFG)

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit
return sum/a.length

Legend: é;

Sum *= num Statement:

Decision: <>
Entry/exit: ©

Structural code coverage: representations

Average of the absolute values of an array of doubles

public double avgAbs(double ... numbers)

// We expect the array to be non-null
if (numbers == null || numbers.length
throw new IllegalArgumentException("

}

double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];

if (d < 9) {
sum -= d;
} else {
sum += d;
}

}

return sum/numbers.length;

\}\

{

and non-empty

== 0) {

Array numbers must not be null or empty!");

a==null ||
a.length==0

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

|

Exceptional
exit

return sum/a.length |

sum += num

Normal
exit

Statement coverage

e Every statement must be
executed at least once.

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

return sum/a.length } >@

exit

sum += num

Statement coverage

a==null ||
a.length==(

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length m

sum += num

true

sum -= num

v

Statement coverage

e Every statement must be
executed at least once.

e = node coverage in the control-flow graph (CFG)

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

»{ Normal
exit

return sum/a.length I

sum += num

Decision coverage, a.k.a. branch coverage

e Every decision must evaluate to
every possible outcome (true/false) at least once.
e decision = maximal boolean expression

O may have boolean subexpressions

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

return sum/a.length } >@

exit

sum += num

Decision coverage

throw new lllegalArgumentException(
“Array a must not be null or empty!”)

Exceptional
exit
return sum/a.length m

sum += num

Decision coverage

e Every decision must evaluate to
every possible outcome (true/false) at least once.
e = edge coverage in the control-flow graph (CFG)

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) it

return sum/a.length } :@

exit

sum += num

Condition coverage vs. decision coverage

Terminology

e Condition: a boolean expression that cannot be decomposed into
simpler boolean expressions (atomic).

e Decision: a maximal boolean expression. It is composed of 1 or
more conditions, using O or more logical connectors.

e Example:if(al|b){...}
m aand b are conditions.
m The boolean expression a || b is a decision.

Condition coverage

e Every condition in the program must take on
every possible outcome (true/false) at least once.
e condition = minimal boolean expression

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit
return sum/a.length } > Normal
exit
I num = a[i]

false
sum += num

true

I sum -= num

'

l ++i

Condition coverage

e Every condition in the program must take on
every possible outcome (true/false) at least once.
e = edge coverage in the assembly program

throw new lllegalArgumentException(Exceptional
“Array a must not be null or empty!”) exit

»{ Normal
exit

return sum/a.length }

sum += num

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

Subsumption relationships:

1. Does statement coverage subsume decision coverage?
2. Does decision coverage subsume statement coverage?
3. Does decision coverage subsume condition coverage?
4.

Does condition coverage subsume decision coverage?

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

Subsumption relationships:

Statement coverage does not subsume decision coverage
Decision coverage subsumes statement coverage

Decision coverage does not subsume condition coverage

O Ddb -~

Condition coverage does not subsume decision coverage

There are more coverage criteria, including MC/DC.
(MC/DC is required for safety-critical systems -- DO-178B/C.)

Decision coverage vs. condition coverage

4 possible tests for the decision a || b:

1. a=0,b=0 a b allb

2. a=0,b=1

3 a=1,b=0 001 0@

4. a=1,b=1 0 1 1
1 0 1
1 1 1

The test suite in the red box
satisfies condition coverage
but not decision coverage

a b allb
0 0 0
0o 1 1
1 O 1
1 1 1

The test suite in the red box does
not satisfy condition coverage
but does decision coverage

Neither coverage criterion subsumes the other!

Code coverage: summary

N = e e e e e e >
CLVONOUDAWNHOOVONOUAWNK S
N A

H NOOOON

4

N

Classes in this File Line Coverage Branch Coverage
100% 1 100%

package avg;

public class Avg {

/*
* Compute the average of the absolute values of an array of doubles
*/
public double avgAbs(double ... numbers) {
// We expect the array to be non-null and non-empty
if (numbers == null || numbers.length == 0) {
throw new IllegalArgumentException("Array numbers must not be null or empty!");
}
double sum = 0;
for (int i=0; i<numbers.length; ++i) {
double d = numbers[i];
if (d < 0) {
sum -= d;
} else {
sum += d;
}
}
return sum/numbers.length;
}
}

Code coverage is easy to compute.
Code coverage has an intuitive interpretation.

Code coverage in industry: Code coverage at Google
Code coverage itself is not sufficient!

Complexity

https://homes.cs.washington.edu/~rjust/publ/google_coverage_fse_2019.pdf

Evaluating a test suite: maximize a metric

Input. a test suite and a metric
Output: a measurement of the metric

Metrics:

e Lines of code executed = code coverage
e Decisions evaluated to true and false = branch coverage
o ...

e Mutation score

o A mutant is a slightly changed variant of the code

Mutation: a concrete example

Original program:
public int min(int a, int b) {
return a < b ? a : b;

Mutant 1:
public int min(int a, int b) {
return a;

Mutation: another example

Original program:
public int min(int a, int b) {
return a < b ? a : b;

Mutant 2:
public int min(int a, int b) {
return b;

Mutation: yet another example

Original program:
public int min(int a, int b) {
return a < b ? a : b;

Mutant 3:
public int min(int a, int b) {
return a >= b ? a : b;

Mutation: last example (I promise)

Original program:
public int min(int a, int b) {
return a < b ? a : b;

Mutant 4:
public int min(int a, int b) {
return a <= b ? a : b;

Mutation score

Input: a test suite and a set of mutants
Metric.: number of test failures
(Jargon: to “kill” a mutant is for the test to fail)

Example: test suite fails for 3 of the 4 mutants; score = .75

Why is a test failure good?

Modified Condition/Decision Coverage
(MC/DC)

MCDC: Modified condition and decision coverage

e Every decision in the program must take on
every possible outcome (true/false) at least once

e Every condition in the program must take on
every possible outcome (true/false) at least once

e Each condition in a decision has been shown to

independently affect that decision’s outcome.

(A condition is shown to independently affect a decision’s outcome by:
varying just that condition while holding fixed all other possible conditions.)

Required for safety critical systems (DO-178B/C)

MC/DC: an example

if (a | b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

Which tests (combinations of a and b) satisfy MCDC?

MC/DC: an example

if (a | b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

Does this test suite satisty MCDC?

MC/DC: an example

if (a | b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

MCDC is still cheaper than testing all possible combinations.

MC/DC: another example

if (a || b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

Why is this example different?

MC/DC: another example

if (a || b)
a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 -- 1
1 -- 1

Short-circuiting operators may not evaluate all conditions.

MC/DC: yet another example

if (la) ... if (a || b)

a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
1 0 1
1 1 1

What about this example?

MC/DC: another example

if (la) ... if (a || b)

a b Outcome MCDC
e Decision coverage
0 0 0 e Condition coverage
0 1 1 e Each condition shown to
independently affect outcome
X
X

Not all combinations of conditions may be possible.

MCDC: complex expressions

Provide an MCDC-adequate test suite for:
1. a | b | c

2. a &b &c

albl|c

a&b&c

