
CSE 403
Software Engineering

Coverage-based testing
and mutation testing

Code coverage: example

public double avgAbs(double ... numbers) {

 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("Array numbers must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) {
 sum -= d;
 } else {
 sum += d;
 }
 }

 return sum/numbers.length;
}

Average of the absolute values of an array of doubles

https://github.com/rjust/testing-ci-gradle

https://github.com/rjust/testing-ci-gradle

Line coverage

(Cobertura’s Code coverage report.)

https://github.com/rjust/testing-ci-gradle

https://github.com/rjust/testing-ci-gradle

What is the point of code coverage metrics?

Examples of metrics:
● Statement coverage
● Branch coverage
● Path coverage
● Mutant coverage
● …

Example code coverage metrics

Beyond line coverage

public double avgAbs(double ... numbers) {

 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("Array numbers must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) {
 sum -= d;
 } else {
 sum += d;
 }
 }

 return sum/numbers.length;
}

Average of the absolute values of an array of doubles

Another representation: the control flow graph (CFG)

Control flow graph (CFG)
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i] Legend:

Statement:

Decision:

Entry/exit:

Structural code coverage: representations

public double avgAbs(double ... numbers) {

 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("Array numbers must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) {
 sum -= d;
 } else {
 sum += d;
 }
 }

 return sum/numbers.length;
}

Average of the absolute values of an array of doubles

Statement coverage

● Every statement must be
executed at least once.

Statement coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Statement coverage

● Every statement must be
executed at least once.

● = node coverage in the control-flow graph (CFG)

Decision coverage, a.k.a. branch coverage

● Every decision must evaluate to
every possible outcome (true/false) at least once.

● decision = maximal boolean expression
○ may have boolean subexpressions

Decision coverage
Entry
point

a==null ||
a.length==0

sum = 0

i = 0

i<a.length return sum/a.length Normal
exit

Exceptional
exit

throw new IllegalArgumentException(
 “Array a must not be null or empty!”)

true

true

false

false

num < 0 sum += numfalse

true

sum -= num

++i

num = a[i]

Decision coverage

● Every decision must evaluate to
every possible outcome (true/false) at least once.

● = edge coverage in the control-flow graph (CFG)

Condition coverage vs. decision coverage

Terminology
● Condition: a boolean expression that cannot be decomposed into

simpler boolean expressions (atomic).

● Decision: a maximal boolean expression. It is composed of 1 or
more conditions, using 0 or more logical connectors.

● Example: if (a || b) { … }
■ a and b are conditions.
■ The boolean expression a || b is a decision.

Condition coverage

● Every condition in the program must take on
every possible outcome (true/false) at least once.

● condition = minimal boolean expression

Condition coverage

● Every condition in the program must take on
every possible outcome (true/false) at least once.

● = edge coverage in the assembly program

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

Subsumption relationships:
1. Does statement coverage subsume decision coverage?

2. Does decision coverage subsume statement coverage?

3. Does decision coverage subsume condition coverage?

4. Does condition coverage subsume decision coverage?

Structural code coverage: subsumption

Given two coverage criteria A and B,
A subsumes B iff satisfying A implies satisfying B

Subsumption relationships:
1. Statement coverage does not subsume decision coverage

2. Decision coverage subsumes statement coverage

3. Decision coverage does not subsume condition coverage

4. Condition coverage does not subsume decision coverage

There are more coverage criteria, including MC/DC.
(MC/DC is required for safety-critical systems -- DO-178B/C.)

Decision coverage vs. condition coverage

4 possible tests for the decision a || b:
1. a = 0, b = 0
2. a = 0, b = 1
3. a = 1, b = 0
4. a = 1, b = 1

Neither coverage criterion subsumes the other!

a b a || b

0 0 0

0 1 1

1 0 1

1 1 1

a b a || b

0 0 0

0 1 1

1 0 1

1 1 1
The test suite in the red box

satisfies condition coverage
but not decision coverage

The test suite in the red box does
not satisfy condition coverage

but does decision coverage

Code coverage: summary

● Code coverage is easy to compute.
● Code coverage has an intuitive interpretation.
● Code coverage in industry: Code coverage at Google
● Code coverage itself is not sufficient!

https://homes.cs.washington.edu/~rjust/publ/google_coverage_fse_2019.pdf

Evaluating a test suite: maximize a metric

Input: a test suite and a metric
Output: a measurement of the metric

Metrics:
● Lines of code executed = code coverage
● Decisions evaluated to true and false = branch coverage
● …
● Mutation score

○ A mutant is a slightly changed variant of the code

Mutation: a concrete example

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 1:
public int min(int a, int b) {

 return a;

}

Mutation: another example

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 2:
public int min(int a, int b) {

 return b;

}

Mutation: yet another example

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 3:
public int min(int a, int b) {

 return a >= b ? a : b;

}

Mutation: last example (I promise)

Original program:
public int min(int a, int b) {

 return a < b ? a : b;

}

Mutant 4:
public int min(int a, int b) {

 return a <= b ? a : b;

}

Mutation score

Input: a test suite and a set of mutants
Metric: number of test failures

(Jargon: to “kill” a mutant is for the test to fail)

Example: test suite fails for 3 of the 4 mutants; score = .75

Why is a test failure good?

Modified Condition/Decision Coverage
(MC/DC)

MCDC: Modified condition and decision coverage

● Every decision in the program must take on
every possible outcome (true/false) at least once

● Every condition in the program must take on
every possible outcome (true/false) at least once

● Each condition in a decision has been shown to
independently affect that decision’s outcome.
(A condition is shown to independently affect a decision’s outcome by:
varying just that condition while holding fixed all other possible conditions.)

Required for safety critical systems (DO-178B/C)

MC/DC: an example

if (a | b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

Which tests (combinations of a and b) satisfy MCDC?

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: an example

if (a | b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

Does this test suite satisfy MCDC?

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MC/DC: an example

if (a | b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

MCDC is still cheaper than testing all possible combinations.

MC/DC: another example

if (a || b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Why is this example different?

MC/DC: another example

if (a || b)

a b Outcome

0 0 0

0 1 1

1 -- 1

1 -- 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Short-circuiting operators may not evaluate all conditions.

MC/DC: yet another example

if (!a) ... if (a || b)

a b Outcome

0 0 0

0 1 1

1 0 1

1 1 1

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

What about this example?

MC/DC: another example

if (!a) ... if (a || b)

a b Outcome

0 0 0

0 1 1

X X X

X X X

MCDC

● Decision coverage
● Condition coverage
● Each condition shown to

independently affect outcome

Not all combinations of conditions may be possible.

MCDC: complex expressions

Provide an MCDC-adequate test suite for:
1. a | b | c

2. a & b & c

a | b | c

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

a & b & c

a b c

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

