
CSE 403 Software
Engineering
Testing

Today’s outline

Software testing
•Motivating examples

•Categories of tests

•Unit testing

2

3

Could better testing have helped …

Therac-25 radiation therapy machine (1985-87)

• Device to create high energy beams to destroy tumors with
minimal impact on surrounding healthy tissue

• Caused excessive radiation in some situations

• What happened?
– An update removed hardware interlocks that prevented the

electron-beam from operating in its high-energy mode.
 So all the safety checks were done in the software.

– The software set a flag variable by incrementing it.
Occasionally an arithmetic overflow occurred, causing the
software to bypass safety checks.

– The equipment control task did not properly synchronize with
the operator interface task, so that race conditions occurred if
the operator changed the setup too quickly.

• More deaths from a radiation machine in Panama (2006)

Therac-25 - Wikipedia

Cost: (at least) death in 6
patients

https://en.wikipedia.org/wiki/Therac-25#Problem_description

Ariane 5 rocket (1996)

• European heavy-lift space launch vehicle - self-destructed 37 seconds after launch

• What happened?
• A control software defect went undetected –

• Conversion from 64-bit floating point to 16-bit signed integer caused an exception
• Floating-point number was larger than 32767 (max 16-bit signed integer), overflow

– Efficiency considerations had led to the disabling of the exception handler
– Program crashed 🡪 rocket crashed

Cost of
program:
over
€1 billion

Ariane 5 - Wikipedia

https://en.wikipedia.org/wiki/Ariane_5

Mars Polar Lander (1999)

• NASA robotic spacecraft, created to study the
soil and climate of a region on Mars

• After descent phase, lander failed to reestablish
communication with Earth

• What (most likely) happened?
• Sensor signal falsely indicated that the craft had

touched down when it was 130-feet above the
surface and the descent engines to shut down
prematurely

• The error was traced to a single bad line of software
code

Mars Polar Lander - Wikipedia

Cost of program:
$165 million

https://en.wikipedia.org/wiki/Mars_Polar_Lander

Northeast blackout (2003)

• Defect in alarm system
prevented notification about
overloaded power lines.

• Cascading failures.
• 55 million people affected
• ~100 deaths

7

Knight Capital Group (2012)

• Market maker for stock trading
• Changed software, one host didn’t get part of the update
• Lost $440m in 45 minutes

8

WannaCry Ransomware Attack (2017)

• Cryptoworm infecting computers, encrypting their
data, and demanding ransom payments

• Estimated to have affected more than 200,000
computers across 150 countries

• What happened?
• WannaCry exploited a defect in the Server

Message Block (SMB) protocol
• MSFT provided a patch earlier, but many
 customers hadn’t installed it yet

WannaCry ransomware attack - Wikipedia

Cost of exploit:
100s of millions
to billions of $

NHS - 70,000
hospital devices
were impacted

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

Quality assurance

Reasons to avoid defects:

● engineering craftsmanship
● cost of failures (sometimes large, but every failure matters)

Testing is an essential, effective way to discover failures

● combine with other techniques: linting, code reviews, proofs, …

10

UW CSE 403 Au23 11

12

Which is the most dangerous error?

● Integer overflow
● SQL injection
● Cross-site scripting
● Null pointer dereference
● Out-of-bounds read
● Out-of-bounds write

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

13

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

If the user enters “mernst”, the value of query is:

14

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

If the user enters “mernst”, the value of query is:

 "select from table where user='mernst'"

15

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

If the user enters “mernst”, the value of query is:

 "select from table where user='mernst'"

What if a user enters, as their username: ' or ''='

The value of query is:

16

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

If the user enters “mernst”, the value of query is:

 "select from table where user='mernst'"

What if a user enters, as their username: ' or ''='

The value of query is:

 "select from table where user='' or ''=''"

17

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

If the user enters “mernst”, the value of query is:

 "select from table where user='mernst'"

What if a user enters, as their username: ' or ''='

The value of query is:

 "select from table where user='' or ''=''"

18

SQL injection

Assume this code:

 String query =

 "select from table where user='" + username + "'";

If the user enters “mernst”, the value of query is:

 "select from table where user='mernst'"

What if a user enters, as their username: ' or ''='

The value of query is:

 "select from table where user='' or ''=''"

19

UW CSE 403 Au23 20

2023 CWE Top 25 Most
Dangerous Software
Weaknesses (mitre.org)

Errors identified as root cause of
reported vulnerabilities
NVD - Home (nist.gov)

And the
data says …

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#top25list
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#top25list
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#top25list
https://nvd.nist.gov/

So let’s test! Four categories of testing

1. Unit Testing
• Does each module do what it is supposed to do in isolation?

2. Integration Testing
• Do you get the expected results when the parts are put together?

3. Validation Testing
• Does the program satisfy the requirements?

4. System Testing
• Does the program work as a whole and within the overall environment?

(includes full integration, performance, scale, etc.)

What are other testing-related terms?

•Regression testing
•Black box, white box testing
•Code coverage testing
•Boundary case testing
•Test-driven development
•Mutation testing
•Fuzz testing
•Performance testing
•Usability testing
•Acceptance testing

Let’s see if we can name at least 10:

Testing vs. debugging

Testing: is there a defect?

Debugging: where is the defect? how to fix the defect?

23

Regression testing

•Whenever you find a defect
• Store the input that triggered that defect, plus the correct output
• Add these to the test suite
• Verify that the test suite fails
• Fix the defect
• Verify the fix

•Ensures that your fix solves the problem
•Helps to populate test suite with good tests
•Protects against reversions that reintroduce the defect

• It happened at least once, and it might will happen again

Fool me once, shame on you
Fool me twice, shame on me

 Proverb

Also look for similar
defects elsewhere!

Time out: How else can we build in quality?

What can we do beyond testing?
Hint: build in quality from the start ☺

• Good architecture, design, and planning
• Coding style guides, linting
• Code reviews
• Atomic commits
• Pair programming
• …

Today’s outline

Software testing
•Motivating examples
•Categories of tests
• Unit testing

• Black box testing
• Boundary case testing
• Test driven development

• White-box testing
• Static code analysis
• Code coverage testing

26

We are here

Unit testing

• A unit is an independently testable part of the software system

(e.g. in Java, a method, a class, …).

• Goal: Verify that each software unit performs as specified.
• Focus:

• Individual units (not the interactions between units).
• Usually input/output relationships.

27

Testing best practices: motivating example 1

public double avgAbs(double ... numbers) {

 // We expect the array to be non-null and non-empty
 if (numbers == null || numbers.length == 0) {
 throw new IllegalArgumentException("Array numbers must not be null or empty!");
 }

 double sum = 0;
 for (int i=0; i<numbers.length; ++i) {
 double d = numbers[i];
 if (d < 0) {
 sum -= d;
 } else {
 sum += d;
 }
 }

 return sum/numbers.length;
}

Average of the absolute values of an array of doubles

What tests should we write for this method?

Testing best practices: motivating example 2

public class Comp implements Comparable<Comp> {
 private int number;
 public Comp(int number) {this.number = number;}

 @Override
 public int compareTo(Comp other) {
 if (other.number == this.number) return 0;
 return this.number < other.number ? -1 : 1;
 }
}

public class CompTest {
 @Test
 public void testSmaller() {
 Comp c1 = new Comp(10);
 Comp c2 = new Comp(20);
 assertEquals(c1.compareTo(c2), -1);
 }
}

What’s wrong with this test? (Note: the compareTo implementation is correct.)

Compare two values

Two types of unit testing

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code

Examines the module/system internals
Aims to maximize a measure of test suite quality

Black-box testing

•Black-box is based on specifications (requirements and
functionality), not code

•Tester does not look at the code while constructing the tests

•Work from the user or client's perspective

How do you know when you are done?

You have tested all the behaviors, according to the specification?

How do you know when you have tested all the behaviors?

What if the behavior differs from the specification?

32

Approach:

● build tests according to the text of the specification
○ “cover” the specification

● guess about what errors the programmer might have made
○ add more tests based on these guesses/heuristics

Black box: boundary case testing

Boundary case testing:

•What: test edge conditions

•Why?
• #1 and #7 Most Dangerous Software Weakness!

• Off-by-one defects are common (< vs. <=, etc.)

• Requirement specs may be fuzzy about behavior on boundaries

• Often uncovers internal hidden limits in code

Black box: boundary case example #1

•Write test cases based on paths through the specification

• int find(int[] a, int value) throws Missing
// returns: the smallest i such that a[i] == value
// throws: Missing if value not in a[]

•Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

•Have we captured all the behaviors?

([4, 5, 5], 5) => 1

Boundary case #2

<E> void appendList(List<E> src, List<E> dest) {

// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case?

Boundary case #2 (aliases)

<E> void appendList(List<E> src, List<E> dest) {

// modifies: src, dest

// effects: removes all elements of src and appends them

// in reverse order to the end of dest

What would be a good test in this case? Consider if src and dest
are the same object

Testing aliasing is a
good test!

Boundary case #3

public int abs(int x)
 // returns: |x|

• What are some values or ranges of x that might be worth probing?
• x < 0, x ≥ 0
• x = 0 (boundary condition)
• Specific tests: say x = -1, 0, 1

Boundary case #3 (arithmetic overflow)

public int abs(int x)
 // returns: |x|

• What are some values or ranges of x that might be worth probing?
• x < 0, x ≥ 0
• x = 0 (boundary condition)
• Specific tests: say x = -1, 0, 1

• How about…
 int x = -2147483648; // this is Integer.MIN_VALUE
 System.out.println(x<0); // true
 System.out.println(Math.abs(x)<0); // also true!

Javadoc of abs says … if the argument is equal to the value of Integer.MIN_VALUE, the most
negative representable int value, the result is that same value, which is negative

Theory explains why boundary testing works

•Divide the input into subdomains
• A subdomain is a subset of possible inputs
• Identify input sets with same behavior
• Try one input from each set

• A program has the “same behavior” on two inputs if it:
1) gives correct result on both, or
2) gives incorrect result on both (even if different incorrect result)
• “Same behavior” is unknowable
• A subdomain is revealing for an defect, E, if each test input fails

(misbehaves)

If the program has a defect, it is revealed by a test in its revealing
subdomain

What if you mis-drew the boundaries?

Boundary case testing heuristic

•Create tests at the boundaries of subdomains

•Catches common boundary case defects:
• Arithmetic

• Smallest/largest values
• Zero

• Objects
• Null
• Circular
• Same object passed to multiple arguments (aliasing)

• You drew the boundaries wrong

Black box: test driven development

Test driven development (TDD):

•What:
• Test is based on the spec and is developed before

the code is written
• Will fail initially
• Write just enough code to make it pass!

•Why?
• Significantly less defect rate
• Improved understanding of requirements and

ability to influence design
• Not influenced by implementation choices

Write
test

Write
code to

pass test

Refactor
code

Black box: test driven development

Test driven development (TDD):

•What:
• Test is based on the spec and is developed before

the code is written
• Will fail initially
• Write just enough code to make it pass!

•Why?
• In practice, significantly less defect rate
• Improved understanding of requirements and

ability to influence design
• Not influenced by implementation choices

Write
test

Write
code to

pass test

Refactor
code

Let’s try it out with this avgAbs spec

TDD – what tests need to pass in order for us to sign off on the coding?

44

double avgAbs(double ... numbers)
 // Average of the absolute values of an array of doubles

• assertEquals(2.0, avgAbs({1.0, 2.0, 3.0}));
• assertEquals(2.0, avgAbs({1.0, -2.0, 3.0}));
• assertEquals(2.0, avgAbs({2.0}));
• …

Let’s try it out with this date spec

TDD – what tests need to pass in order for us to sign off on the coding?

TDD can result in a lot of tests!

• Develop tests now (TDD) or later – need to be judicious in which to write

45

class Date
• Date(int yyyy, int mm, int dd)

// Creates date dd/mm/yyyy
• boolean after(Date date1, Date date2)

// Tests if date1 is after date2
• Date subtractWeeks(Date date1, int numWks)

// Subtracts numWks from date1

Moving on to white box testing

Black box testing
Written without knowledge of the code

Treats the module/system as atomic
Best simulates the customer experience

White box testing
Written with knowledge of the code

Examines the module/system internals
Aims to maximize a measure of test suite quality

White (clear, glass) box testing

• Ultimate goal:
Test suite covers (executes) all of the program
Question: what does “all of the program” mean?

• Assumption:
Test more behaviors => better test suite quality

• Benefit: tests features not described by specification
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

Motivation for white-box testing

 boolean[] primeTable = new boolean[CACHE_SIZE];
 boolean isPrime(int x) {
 if (x>CACHE_SIZE) {
 for (int i=2; i<x/2; i++) {
 if (x%i==0) return false;
 }
 return true;
 } else {
 return primeTable[x];
 }
 }

 Consider an important transition around x = CACHE_SIZE

White-box testing has advantages
•Greater coverage

• Increases confidence in code quality
• If tests cover all of the code in the program, are you confident it’s error free?

• Insight into test cases
• Which tests are likely to yield new information (and should be written)

•Can surface an important class of boundaries
• Consider CACHE_SIZE
• Need to check numbers on each side of CACHE_SIZE

• CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1
• If CACHE_SIZE is mutable, we may need to test with different CACHE_SIZE’s

What about
challenges?

White-box testing has disadvantages

•Focus on the code: miss incompatibilities with spec
•Focus on the algorithm: miss alternate implementations
•Groupthink: think like the coder

White (clear, glass) box testing

• Ultimate goal:
Test suite covers (executes) all of the program
Question: what does “all of the program” mean?

• Assumption:
Test more behaviors => better test suite quality

• Benefit: tests features not described by specification
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

White (clear, glass) box testing

• Ultimate goal:
Test suite covers (executes) all of the program
Question: what does “all of the program” mean?

• Assumption:
Test more behaviors => better test suite quality

• Benefit: tests features not described by specification
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

● every line of code
● every then and else

clause
● every CMP instruction

in the binary
● every input

White (clear, glass) box testing

• Ultimate goal:
Test suite covers (executes) all of the program
Question: what does “all of the program” mean?

• Assumption:
Test more behaviors => better test suite quality

• Benefit: tests features not described by specification
• Control-flow details
• Performance optimizations
• Alternate algorithms for different cases

● every line of code
● every then and else

clause
● every CMP instruction

in the binary
● every input
● every subdomain

(Artificial) goal:
Maximize a measurement
of the test suite

Digression: what matters about a test suite?

54

More on code coverage

code coverage: What fraction of the code is executed by the tests
• This is a metric of test suite quality

• statement coverage - tries to execute every line (practical?)

• path coverage - follow every distinct branch through code

• condition coverage - every condition that leads to a branch

• function coverage - treat every behavior / end goal separately

More on code coverage

code coverage: What fraction of the code is executed by the tests
• This is a metric of test suite quality

• statement coverage - tries to execute every line (practical?)

• path coverage - follow every distinct branch through code

• condition coverage - every condition that leads to a branch

• function coverage - treat every behavior / end goal separately

What about dead code?

Consider tests to cover all paths for the Date class

Consider tests to cover all paths for the Date class

You must use a code
coverage tool for
your project

How much coverage is enough? 100%?
May be subject to the law of diminishing returns.
Common advice: shoot for 80%.

Good resource on code coverage and code coverage tools:
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
And a good list of coverage tools:
https://www.browserstack.com/guide/code-coverage-tools

https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.browserstack.com/guide/code-coverage-tools

Ending with some Rules of Testing

•First rule of testing: Do it early and do it often
Best to catch defects soon, before they have a chance to hide
Automate, automate, automate the process

•Second rule of testing: Be systematic
If you randomly thrash, defects will hide until you're gone
Writing tests is a good way to understand the spec

Think about revealing domains and boundary cases
If the spec is confusing, write more tests

Spec can be defective too
If you find incorrect, incomplete, ambiguous, and missing corner cases, fix it!

When you find a defect: write a regression test, fix it, look for similar defects

