
CSE 403 Software
Engineering
Build systems &
Continuous Integration and Deployment

Outline

•Build systems
•Continuous integration and deployment systems

• What are they?
• How do they relate?
• Best practices
• Ideas to explore for your projects

2

3

The code is written … now what?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Run tests
● Generate user documentation
● Create artifacts for customers
● Ship!
● Operate, monitor, repeat

What does a developer do?

Which of these tasks should
be handled manually?

4

The code is written … now what?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Run tests
● Generate user documentation
● Create artifacts for customers
● Ship!
● Operate, monitor, repeat

What does a developer do?

Which of these tasks should
be handled manually?

NONE!

Instead, orchestrate with a tool

• Build system: a tool for automating compilation and other tasks

• Is a component of a continuous integration/deployment system

5

✔Get the source code
✔Install dependencies
✔Compile the code
✔Run static analysis
✔Run tests
✔Generate user documentation
✔Create artifacts for customers
✔Ship!
✔Operate, monitor, repeat

These are all tasks!

tasks

Build systems: tasks

Tasks are code!

● Should be tested
● Should be code-reviewed
● Should be checked into version control

6

Build system best practices

• Automate, automate, automate everything!
• Always use a build tool (one-step build)
• Don’t depend on anything that’s not in the build file
• Use a CI tool to build and test your code on every commit
• Don’t break the build!

• Use pull requests to run CI run before committing to mainline

7

How can a build system help us?

1. Dependency management
1. Identifies dependencies between files (including externals)
2. Runs the steps in the right order
3. Only runs the steps needed (due to dependency changes)

2. Efficiency and reliability
1. Automates the build process, for any team member in any environment
2. Formalizes the build process (no tribal knowledge)
3. Eliminates the chance of errors
4. Speeds up the process

8

The build configuration system

A build configuration (= buildfile):
● defines tasks

○ and external resources, such as libraries
● defines dependencies among tasks (= a graph)

A build system:
● executes the tasks (that are out of date)

9

Simple example code for dependency mgmt

10

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

11

compile
Main

compile
Lib

run
lib
test

run
system
test

Build config: dependencies between tasks

What are the
dependencies
between these

tasks?
And why do I care?

% ls src/
Lib.java
LibTest.java
Main.java
SystemTest.java

12

compile
Main

compile
Lib

run
lib
test

run
system
test

Build config: dependencies between tasks

13

compile
Main

compile
Lib

run
lib
test

run
system
test

Build config: dependencies between tasks

14

compile
Main

compile
Lib

run
lib
test

run
system
test

In what order
should we run
these tasks?

Build config: dependencies between tasks

15

Large projects have thousands of tasks
• Example: clone https://github.com/typetools/checker-framework, run
./gradlew tasks or ./gradlew taskTree build

• Dependencies between tasks form a directed acyclic graph (dag)
• Use topological sort to create an order for tasks

• See Appendix (slides at end) for example

External code (libraries) also can be complex
• List all dependencies for reproducibility

• A hermetic build is “insensitive to the libraries and other software installed

on the build machine”¹
• Build systems can manage external dependencies as well!

¹https://landing.google.com/sre/sre-book/chapters/release-engineering/

Build systems determine task order

https://github.com/typetools/checker-framework
https://landing.google.com/sre/sre-book/chapters/release-engineering/

16

Dependency/package managers
Linux: apt, yum (snap is different)
Java: gradle, maven (artifacts at Maven Central)
JavaScript: npm
Python: pip
Ruby: RubyGems
Rust: cargo

The build configuration system

A build configuration (= buildfile):
● defines tasks

○ and external resources, such as libraries
● defines dependencies among tasks (= a graph)

A build system:
● executes the tasks (that are out of date)

17

18

Example
https://github.com/plume-lib/plume-util/blob/master/build.gradle

https://github.com/plume-lib/plume-util/blob/master/build.gradle

19

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

kind of rule

20

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

explicitly specified dependencies

21

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
 description 'Format the Java source code'
 // jdk8 and checker-qual have no source, so skip
 onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
 executable 'python'
 doFirst {
 args += "${formatScriptsHome}/run-google-java-format.py"
 args += "--aosp" // 4 space indentation
 args += getJavaFilesToFormat(project.name)
 }
}

code! (usually, following conventions is enough)

22

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

23

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

kind of rule

24

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies

25

Example task: bazel

java_binary(
 name = "dux",
 main_class = "org.dux.cli.DuxCLI",
 deps = ["@google_options//:compile",
 "@checker_qual//:compile",
 "@google_cloud_storage//:compile",
 "@slf4j//:compile",
 "@logback_classic//:compile"],
 srcs = glob(["src/org/dux/cli/*.java",
 "src/org/dux/backingstore/*.java"),
)

explicitly specified
dependencies
(also bazel tasks)

26

How to speed up the build
● Incrementalize - only rebuild what you have to

○ Compute hash codes for inputs to each task

■ Watch out: there are more inputs than you think

○ Before executing a task, check input hashes

○ If they have not changed since the last time the task was executed, skip it!

● Execute many tasks in parallel

● Cache artifacts (in the cloud)

Static analysis

27

Can run before or after the compile step

Examples:
• Credential scan
• Date scan
• Sensitive data scan
• Check formatting
• Linting
• Verification

Build systems: opportunity for static analysis

28

Could these types of static analysis
tools be run earlier than CI?

Here’s an example build system ‘input’

29

Basic-Stats
build.gradle

Simple-C
Makefile

for the “make” build system

There are a lot of build systems

30

C, general: make, CMake

Java, etc.: gradle, sbt, maven, ant
Python: SCons
Ruby: rake

General: blaze, buck

A build configuration:
● defines tasks
● defines dependencies

among tasks (a graph)
A build system:

● executes the tasks

Build system code may run at
graph construction time or at
task execution time

Assignment: evaluate and select a build system

31

Java+

gradle Open-source successor to ant and maven

bazel Open-source version of Google’s internal build tool (blaze)

Python

hatch Implements standards from the Python standard (uses TOML

files, has PIP integration)

poetry Packaging and dependence manager

tox Automate and standardize testing

JavaScript

npm Standard package/task manager for Node, "Largest software

registry in the world."

webpack Module bundler for modern JavaScript applications

gulp Tries to improve dependency and packing

Many
other

options!

Over to
you to

research

Outline

•Build systems
•Continuous integration and deployment systems

• What are they?
• How do they relate?
• Best practices
• Ideas to explore for your projects

32

We are here

33

CI/CD: What’s the difference?

Continuous Integration (CI)
• Automatically test upon each integration (≈ commit)
• Complements local developer workflows (may run different tests)
• Goal: find bugs quicker, improve quality

Continuous Deployment/Delivery (CD)
• Automatically pushes changes [to staging environment and then] to

production
• Goal: users always use the latest version of the code

https://aws.amazon.com/devops/what-is-devops/

https://aws.amazon.com/devops/what-is-devops/

34

There are many CI tools

Assignment: Research, evaluate
and choose a CI systemetc.

35

Continuous integration basics

• A CI workflow is triggered when an event occurs in your [shared] repo
• Example events

• Push a commit
• Pull request
• Issue creation

• A workflow contains jobs that run in a defined order
• A job is like a shell script and can have multiple steps
• Jobs run in their own vm/container called a runner
• Example jobs

• Run static analysis
• Build, test
• Deploy to production

Using GitHub Actions
terminology;

concepts span all CI
systems

https://docs.github.com/en/actions

https://docs.github.com/en/actions

36

Demo
GitHub Actions:
https://github.com/plume-lib/plume-util/blob/master/.github/workflo
ws/gradle.yml

Dependency examples:
https://app.circleci.com/pipelines/github/randoop/randoop/191/workflo
ws/7d52ead9-c5c3-467d-87d4-5316d7de1692
https://app.circleci.com/pipelines/github/codespecs/daikon/97/workflo
ws/5506fe7e-c466-43ee-b5c6-354d8189c97e

https://github.com/plume-lib/plume-util/blob/master/.github/workflows/gradle.yml
https://github.com/plume-lib/plume-util/blob/master/.github/workflows/gradle.yml
https://app.circleci.com/pipelines/github/randoop/randoop/191/workflows/7d52ead9-c5c3-467d-87d4-5316d7de1692
https://app.circleci.com/pipelines/github/randoop/randoop/191/workflows/7d52ead9-c5c3-467d-87d4-5316d7de1692
https://app.circleci.com/pipelines/github/codespecs/daikon/97/workflows/5506fe7e-c466-43ee-b5c6-354d8189c97e
https://app.circleci.com/pipelines/github/codespecs/daikon/97/workflows/5506fe7e-c466-43ee-b5c6-354d8189c97e

37

CI basics (w/ GitHub Actions)

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

What SW architecture is
this using?

Actions are common
GitHub tasks – leverage
those built-in or created
by others (e.g., checkout)

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

Let’s try writing our own simple workflow

Follow along at:

https://github.com/alv880/UW-CSE403-Au23-Projects

Nice light starter tutorial – Automation Step by Step:
https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

38

https://github.com/alv880/UW-CSE403-Au23-Projects
https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

GitHub Actions Step by Step Tutorial

https://www.youtube.com/watch?v=ylEy4eLdhFs

39

https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

40

Example: CI at work at UW

Lab In The Wild
is a research
project drawing
survey input
from diverse
community

Nigini Oliveira
(researcher and
403 prof)
provided this
example

https://www.labinthewild.org/

41

Example: CI with Github actions

42

Example: CI with Github actions

Code reuse with
established “actions”

Trigger

Workflow name

Linux OS environment

One command to run test suite

Unit tests are triggered
on every push of new

code

Continuous delivery/deployment basics

43What is Continuous Delivery? – Amazon Web Services

Staging before production
is typical in industry

Why would you not always
automatically deploy?

https://aws.amazon.com/devops/continuous-delivery/

44

Example: CD with GitHub Pages

Spring ‘23 class
hosted their 403
class website on
GitHub pages

Used CD so that
updates
triggered
publishing the
website update

45

Example: CD configuration

46

Example: CD configuration

Build & CI - Remember these best practices

• Automate everything!

• Always use a build tool (one-step
build)

• Use CI to test your code on every
commit

• Don’t depend on anything that’s not in
the build file (hermetic)

• Don’t break the build!

47

Appendix - Topological sort example

• Build tools use a topological sort to create an order to compiles
• Order nodes such that all dependencies are satisfied
• Implemented by computing indegree (number of incoming edges) for each node
• No dependencies go first and open door to the others

48

49

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: topological sort

What’s the indegree of each node?

50

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Build systems: topological sort

51

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Build systems: topological sort

52

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Build systems: topological sort

53

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

54

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

55

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Which is preferable?

Build systems: topological sort

