CSE 403 Software
Engineering

Build systems &
Continuous Integration and Deployment

Outline

*Build systems
* Continuous integration and deployment systems

* What are they?

* How do they relate?

* Best practices

* Ideas to explore for your projects

What does a developer do?

The code is written ... now what?

Get the source code

Install dependencies

Compile the code

Run static analysis

Run tests

Generate user documentation
Create artifacts for customers
Ship!

Operate, monitor, repeat

Which of these tasks should
be handled manually?

What does a developer do?

The code is written ... now what?

Which of these tasks should
be handled manually?

NONE!

Instead, orchestrate with a tool

* Build system: a tool for automating compilation and other tasks

* Is a component of a continuous integration/deployment system

v/ Get the source code

v/ Install dependencies

v Compile the code

¢/ Run static analysis

v/ Run tests

v/ Generate user documentation

v/ Create artifacts for customers

v/ Ship!

v/ Operate, monitor, repeat
These are all tasks!

Build systems: tasks

Tasks are codel!

e S
e S
e S

NOou
NOou

NOou

O
O

o

be tested
be code-reviewed

be checked into version control

Build system best practices

* Automate, automate, automate everything!

 Always use a build tool (one-step build)
* Don't depend on anything that's not in the build file
* Use a Cl tool to build and test your code on every commit

 Don't break the build!

* Use pull requests to run Cl run before committing to mainline

How can a build system help us?

1. Dependency management
1. Identifies dependencies between files (including externals)

2. Runsthe steps in the right order
3. Only runs the steps needed (due to dependency changes)

2. Efficiency and reliability

1. Automates the build process, for any team member in any environment
2. Formalizes the build process (no tribal knowledge)

3. Eliminates the chance of errors

4. Speeds up the process

The build configuration system

A build configuration (= buildfile):

e defines tasks
o and external resources, such as libraries

e defines dependencies among tasks (= a graph)

A build system:
e executes the tasks (that are out of date)

Simple example code for dependency mgmt

% ls src/
Lib.java
LibTest. java
Main.java
SystemTest. java

10

Build config: dependencies between tasks

compile
Lib
% 1s src/ i What are the
Lib.java dependencies
between these

LibTest.java
Main.java tasks?

SystemTest.java And why do | care?
compile
Main

11

Build config: dependencies between tasks

compile
Lib

compile
Main

12

Build config: dependencies between tasks

compile
Lib

compile
Main

13

Build config: dependencies between tasks

compile
Lib

In what order
should we run
these tasks?

compile
Main

14

Build systems determine task order

Large projects have thousands of tasks

* Example: clone https://github.com/typetools/checker-framework, run
./gradlew tasks or ./gradlew taskTree build
« Dependencies between tasks form a directed acyclic graph (dag)

* Use topological sort to create an order for tasks
* See Appendix (slides at end) for example

External code (libraries) also can be complex
- List all dependencies for reproducibility

* A hermetic build is “insensitive to the libraries and other software installed
on the build machine™
* Build systems can manage external dependencies as well!

15

https://github.com/typetools/checker-framework
https://landing.google.com/sre/sre-book/chapters/release-engineering/

Dependency/package managers

Linux: apt, yum (snap is different)

Java: gradle, maven (artifacts at Maven Central)
JavaScript: npm

Python: pip

Ruby: RubyGems

Rust: cargo

16

The build configuration system

A build configuration (= buildfile):

e defines tasks
o and external resources, such as libraries

e defines dependencies among tasks (= a graph)

A build system:
e executes the tasks (that are out of date)

17

Example

https://github.com/plume-lib/plume-util/blob/master/build.gradle

18

https://github.com/plume-lib/plume-util/blob/master/build.gradle

Example task: gradle

kind of rule
task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {

description 'Format the Java source code’

// Jjdk8 and checker-qual have no source, so skip

onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
executable 'python’

doFirst {
args += "${formatScriptsHome}/run-google-java-format.py"
args += "--aosp"” // 4 space indentation

args += getJavaFilesToFormat(project.name)

19

Example task: gradle

explicitly specified dependencies
task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {

description 'Format the Java source code’

// Jjdk8 and checker-qual have no source, so skip

onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
executable 'python’

doFirst {
args += "${formatScriptsHome}/run-google-java-format.py"
args += "--aosp"” // 4 space indentation

args += getJavaFilesToFormat(project.name)

20

Example task: gradle

task reformat(type: Exec, dependsOn: getCodeFormatScripts, group: 'Format') {
description 'Format the Java source code’
// Jjdk8 and checker-qual have no source, so skip
onlyIf { !project.name.is('jdk8') && !project.name.is('checker-qual') }
executable “python” . qal (usually, followin tions | h)
doFirst { . Y, g conventions Is enoug
args += "${formatScriptsHome}/run-google-java-format.py"

args += "--aosp"” // 4 space indentation
args += getJavaFilesToFormat(project.name)

21

Example task: bazel

java_binary(

hame = "dux",

main_class = "org.dux.cli.DuxCLI",

deps = ["@google_options//:compile”,
"@checker qual//:compile”,
"@google_cloud_storage//:compile”,
"@sl1f4j//:compile”,
"@logback_classic//:compile”],

srcs = glob(["src/org/dux/cli/*.java",

"src/org/dux/backingstore/*.java"),

22

Example task: bazel

kind of rule
java_binary(

hame = "dux",

main_class = "org.dux.cli.DuxCLI",

deps = ["@google_options//:compile”,
"@checker qual//:compile”,
"@google_cloud_storage//:compile”,
"@sl1f4j//:compile”,
"@logback_classic//:compile”],

srcs = glob(["src/org/dux/cli/*.java",

"src/org/dux/backingstore/*.java"),

23

Example task: bazel

java_binary(_explicitly specified

name = "dux", dependencies

main_class=—"0rg.dux.cli.DuxCLI",

deps = ["@google options//:compile”,
"@checker qual//:compile”,
"@google_cloud_storage//:compile”,
"@slf4j//:compile”,
"@logback_classic//:compile”],

srcs = glob(["src/org/dux/cli/*.java",

"src/org/dux/backingstore/*.java"),

Example task: bazel

java_binary(_explicitly specified
name = "dux", dependencies
main_Mg.dux.cli.DuxCLI", (also bazel tasks)

deps = ["@google options//:compile”,
"@checker qual//:compile”,
"@google_cloud_storage//:compile”,
"@slf4j//:compile”,
"@logback_classic//:compile”],
srcs = glob(["src/org/dux/cli/*.java",
"src/org/dux/backingstore/*.java"),

How to speed up the build

e Incrementalize - only rebuild what you have to
o Compute hash codes for inputs to each task
m Watch out: there are more inputs than you think
o Before executing a task, check input hashes
o |If they have not changed since the last time the task was executed, skip it!
e Execute many tasks in parallel
e Cache artifacts (in the cloud)

26

Static analysis

Can run before or after the compile step

Examples:
* Credential scan
* Date scan
* Sensitive data scan
* Check formatting
* Linting
* VVerification

27

Build systems: opportunity for static analysis

< > C @ github.com/Yelp/detect-secrets

‘= README.md

detect-secrets-ci failing § pypi package '1.4.0 § homebrew 1.4.0
Donate 'Chanty

detect-secrets ¢

About @

detect-secrets is an aptly named module for (surprise, surprise) detecting
secrets within a code base.

However, unlike other similar packages that solely focus on finding secrets, this
package is designed with the enterprise client in mind: providing a backwards
compatible, systematic means of:

1. Preventing new secrets from entering the code base,
2. Detecting if such preventions are explicitly bypassed, and

3. Providing a checklist of secrets to roll, and migrate off to a more secure
storage.

Could these types of static analysis

tools be run earlier than CI?

¢« > C

& bearer

Scan your source code against top security and privacy risks.

& github.com/bearer/bearer

Bearer CLI is a static application security testing (SAST) tool that scans your source
code and analyzes your data flows to discover, filter and prioritize security and
privacy risks.

28

Here’s an example build system ‘input’

Simple-C
Basic-Stats Makefile

build.gradle for the “make” build system

29

There are a /ot of build systems

C, general: make, CMake

Java, etc.: gradle, sbt, maven, ant
Python: SCons
Ruby: rake

General: blaze, buck

A build configuration:
e defines tasks
e defines deEendencies
among tasks (a graph)
A build system:
® executes the tasks

Build system code may run at

graph construction time or at
task execution time

30

Assignment: evaluate and select a build system

Many
other
options!

Over to
you to
research

Java+
gradle Open-source successor to ant and maven
bazel Open-source version of Google’s internal build tool (blaze)
Python
hatch Implements standards from the Python standard (uses TOML
files, has PIP integration)
poetry Packaging and dependence manager
tox Automate and standardize testing
JavaScript
npm Standard package/task manager for Node, "Largest software
registry in the world."
webpack Module bundler for modern JavaScript applications

gulp

Tries to improve dependency and packing

31

Outline

* Build systems
 Continuous integration and deployment systems <— We are here

* What are they?

* How do they relate?

* Best practices

* Ideas to explore for your projects

32

Cl/CD: What's the difference?

Continuous Integration (Cl)
* Automatically test upon each integration (= commit)
* Complements local developer workflows (may run different tests)
* Goal: find bugs quicker, improve quality

Continuous Deployment/Delivery (CD)
* Automatically pushes changes [to staging environment and then] to ‘/)

production
* Goal: users always use the latest version of the code

https://aws.amazon.com/devops/what-is-devops/

https://aws.amazon.com/devops/what-is-devops/

There are many Cl tools

e =
00

.

GitHub Actions WS Azure Pipelines

@
O u Bitbucket Pipelines

circleci

Assignment: Research, evaluate

etc. and choose a Cl system

Continuous integration basics

* A Cl workflow is triggered when an event occurs in your [shared] repo

* Example events
* Push a commit
* Pull request
* |ssue creation

* A workflow contains jobs that run in a defined order
* Ajob is like a shell script and can have multiple steps
* Jobs run in their own vm/container called a runner
* Example jobs
* Run static analysis
* Build, test
* Deploy to production

Using GitHub Actions
terminology;
concepts span all Cl
systems

https://docs.github.com/en/actions

35

https://docs.github.com/en/actions

Demo

GitHub Actions:

https://github.com/plume-lib/plume-util/blob/master/.github/workflo
ws/gradle.yml

Dependency examples:
https://app.circleci.com/pipelines/github/randoop/randoop/191/workflo
ws/7d52ead9-c5c3-467d-87d4-5316d7de1692
https://app.circleci.com/pipelines/github/codespecs/daikon/97/workflo
ws/5506fe7e-c466-43ee-b5c6-354d8189c97e

36

https://github.com/plume-lib/plume-util/blob/master/.github/workflows/gradle.yml
https://github.com/plume-lib/plume-util/blob/master/.github/workflows/gradle.yml
https://app.circleci.com/pipelines/github/randoop/randoop/191/workflows/7d52ead9-c5c3-467d-87d4-5316d7de1692
https://app.circleci.com/pipelines/github/randoop/randoop/191/workflows/7d52ead9-c5c3-467d-87d4-5316d7de1692
https://app.circleci.com/pipelines/github/codespecs/daikon/97/workflows/5506fe7e-c466-43ee-b5c6-354d8189c97e
https://app.circleci.com/pipelines/github/codespecs/daikon/97/workflows/5506fe7e-c466-43ee-b5c6-354d8189c97e

Cl basics (w/ GitHub Actions) What SW architecture s

this using?

Job 1 Job 2
Step 1: Run action Step 1: Run action
Step 2: Run script Step 2: Run script
Step 3: Run script Step 3: Run script

Actions are common

GitHub tasks — leverage /’ Step 4: Run action
those built-in or created

by others (e.g., checkout)

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

Let’s try writing our own simple workflow

Follow along at:
https://github.com/alv880/UW-CSE403-Au23-Projects

Nice light starter tutorial - Automation Step by Step:
https://www.youtube.com/watch?app=desktop&v=ylEy4eldhFs

38

https://github.com/alv880/UW-CSE403-Au23-Projects
https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

GitHub Actions Step by Step Tutorial

https://www.youtube.com/watch?v=ylEy4elLdhFs

39

https://www.youtube.com/watch?app=desktop&v=ylEy4eLdhFs

Example: Cl at work at UW

&< O () https://www.labinthewild.org o 38 A o = xR 0
. Our Experiments Findings & Data Sets Blog For Researchers About Us English ~
Lab In The Wild
is a research 1,137
project drawing LAB INTH EWlLD s B i
. month
survey Input
from diverse
community 8 g
Nigini Oliveira
h d What is your decision-making style? What's your personality? Can you tell the nutritional content of
(researcher an 2 plate?
4 O 3 r Of) You are making decisions every day. Have you You will learn about the five main traits of your Take this study to see if you can accurately tell
p wondered what kind of decision-making styles personality and how you score on them. We the nutritional content of a plate. See if you are
. . you have? Take our test and you will learn will also try to establish the relationship more accurate than the average! An Al
p rovi d e d th IS more about it! between personality and physical activity assistant will help you along the way.

goals.

Participate now! Participate now! Participate now!

C I

example

https://www.labinthewild.org/

Example: Cl with Github actions

0 Search or jump to... Pull requests Issues Codespaces Marketplace Explore

& labinthewild / LITW-API Private 4% EditPins v @Unwatch 2 ~

<> Code () Issues 3 i1 Pullrequests 1 ® Actions Projects 1 @ Security [~ Insights 3 Settings

€« CI - UnitTesting
@ ClI Tests run only on push for now. PL + Push was duplicating runs. #15

l () Summary

Triggered via push 1 minute ago Status Total duration Artil
Jobs & nigini pushed -o- Oeaf405 ci_tests Success 1m 26s -
@ test (3.11,6.0)
Run details CI-teSt'ymI

on: push
(% Usage

Matrix: test

59 Workflow file

@ 1 job completed
Show all jobs

Unit tests are triggered

on every push of new

Example: Cl with Github actions code

jobs:

test:
runs-on: ubuntu-latest
strategy: <2 keys>

steps:

uses:
name:
uses:
with:
name:
uses:
with:
name:

run:

name:

run:

name:

run:

name: CI - UnitTesting
on: [push]

actions/checkout@v3

Set up Python ${{ matrix.python-version }}
actions/setup-python@v3

<1 key>

Set up MongoDB ${{ matrix.mongodb-version }}
supercharge/mongodb-github-action@l.8.0

<1 key>

Install dependencies

python3 -..tall hatch

Pre-fly setup
cp $GITHU..GITHUB_ENV

Test with hatch

l

hatch run test:test

A A

Workflow name

Trigger

Linux OS environment

Code reuse with
established “actions”

One command to run test suite

42

Continuous delivery/deployment basics

Why would you not always
automatically deploy?

Vil CONTINUOUS INTEGRATION

APPROVE DEPLOY E
CONTINUOUS DELIVERY

AUTOMATIC DEPLOY @
CONTINUQUS DEPLOYMENT

@ & AUTOMATED > @ & AUTOMATED > @ > @

Source CONTROL Buip

STAGING ProDUCTION
COMMIT CHANGES RUN BUILD AND UNIT TESTS DEPLOY TO TEST ENVIRONMENT DEPLOY TO PRODUCTION

RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS ENVIRONMENT

\ J
|

Staging before production
is typical in industry

What is Continuous Delivery? — Amazon Web Services

43

https://aws.amazon.com/devops/continuous-delivery/

Example: CD with GitHub Pages

& > C @ httpsy//niginigithub.io/SWEng/ G 2 w » 0O eﬂfb‘t‘ca’-e

./ SWEng

Spring 23 class
hosted their 403 S
class website on

GitHub Pages Introduction to SW Engineeting

DISCLAIMER: T7his material is heavily inspired by (and sometimes copied with permission from) the UW’s

Used CD so that CSE403 course by René Just.

This intro to Software Engineering is project-based as we believe you’ll take a lot more from the short
updates lectures if you practice the discussed concepts and principleds. There is a catch: the project is a
vehicle, not the outcome. Your ability to deal with the tools and techniques created throughout the

trigge red history of Software Engineering is the place you should pay attention to.

WHAT?

publishing the
website update

Let’s get this out of the way: What is Software Engineering?

1. A more formal way to see it: “an engineering discipline (hence, uses science to improve
applicability and efficiency) that is concerned with all aspects of software production.” — Ian
Sommerville

. The way we will kind of see it here: a set of principles to design, develop, maintain, test, and
evaluate computer software.

. Also: A whole research field that study what such principles are and what tools can support to
deliver better software.

Material

Example: CD configuration

lQ nigini/ SWEng ' Public

<> Code (%) Issues 4 i1 Pull requests

83 General

Access
A% Collaborators

J) Moderation options

Code and automation
¥ Branches

© Tags

£+ Rules

() Actions

& Webhooks

Environments

o)

9 (» Actions [f] Projects [J1 Wiki () Security |~ Insights| 83 Settings

G v

I = Pages

GitHub Pages

GitHub Pages is designed to host your personal, organization, or project pages frc

Your site is live at https://nigini.github.io/SWEng/
Last deployed by § nigini 2 days ago

Build and deployment

Source

Deploy from a branch ~

Branch
Your GitHub Pages site is currently being built from the main branch. Learn more.

main~ BB / (root) ~ Save

Learn how to add a Jekyll theme to your site.

45

Example: CD configuration

l B nigini/ SWEng Puic

<> Code (%) Issues 4 i1 Pullrequests 9 (] Projects [0 Wiki () Security |~ Insights {8 Settings

@ pages build and deployment #52

l () Summary

r

Jobs

@ build

@ report-build-status

@ deploy
.

\

Run details

(&) Usage

Triggered via dynamic 2 days ago Status Total duration Artifacts
8 nigini o 4169aa2 Success 52s 1
/pages-build-deployment \
on: dynamic
@ hbuild 24s ® < o @ report-build-status 2s
|
~ o @ deploy 7s

https://nigini.github.io/SWEng/

/

46

Build & Cl - Remember these best practices

« Automate everything!

» Always use a build tool (one-step

build)

* Use Cl to test your code on every
commit

* Don't depend on anything that’s not in
the build file (hermetic)

» Don'’t break the build!

47

Appendix - Topological sort example

* Build tools use a topological sort to create an order to compiles

* Order nodes such that all dependencies are satisfied
* Implemented by computing indegree (humber of incoming edges) for each node
* No dependencies go first and open door to the others

48

Build systems: topological sort

compile
Lib

compile
Main

What’s the indegree of each node?

49

Build systems: topological sort

compile
Lib

compile
Main

Build systems: topological sort

compile
Lib

compile
Main

51

Build systems: topological sort

(%) (%)
compile
Lib
1
(%)
compile
Main

52

Build systems: topological sort

(%)
compile
Lib
(%)
compile
Main

e.
(%)

53

Build systems: topological sort

(%)
compile
Lib
(%)
compile
Main

e.
(%)

54

Build systems: topological sort

Valid sorts:

compile
Lib

1. compile Lib, runlib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test
compile
Which is preferable? Main

