
Software Design and Style
CSE 403 Software Engineering

See slides at end for:
• Visualizing your design with UML (unified modeling language)
• Design principles
• Design patterns

Today’s Outline

1. Quick recap – Architecture vs Design
2. Some practical design considerations
3. Class quiz on coding style

See slides at end for a short primer on design material:
• Visualizing your design with UML (unified modeling language)
• Design principles
• Design patterns

2

High level overview from last class

3

Requirements

Architecture

Design

Source code

D
evelo

p
m

ent p
ro

cess

Le
ve

l o
f

ab
st

ra
ct

io
n

The level of abstraction is key

• With both architecture and design,
we’re building an abstract
representation of reality

• Architecture - what components
are needed, and what are their
connections

• Design - how the components are
developed

4

View Controller

Model

Client uses

manipulatesupdates

sees

Object-oriented programming
Focus on the data during design (contrast functional programming)
● Each object (class instance) represents a thing

○ Encapsulation: all information about the thing, in fields
○ Computation is handled within the object

● Information hiding
○ Behavior matters, clients are ignorant of the implementation
○ Communication only by passing messages (Actor model)

■ Implemented via dynamic dispatch

● Subtyping and subclassing
○ Subtyping: substitutability

■ Behavioral substitutability is stronger and more useful
○ Subclassing: inherit implementation

■ Prototypes are a different way to inherit implementation

● Polymorphism: largely orthogonal to OO 5

SOLID principles
Single responsibility: Focus on doing one thing well. There should never be more than
one reason to modify a class. Every class should have only one responsibility.

Open–closed: Can extend behavior without knowing the implementation. “Software
entities ... should be open for extension, but closed for modification.”[7]

Liskov substitution (= behavioral substitution/subtyping): Code written to use a base
class works with objects of derived classes. Subtypes have stronger specifications.
Interface segregation: Minimality and composability of interfaces. Don’t force clients to
depend upon or implement interfaces that they do not use.
Dependency inversion: Depend upon abstractions, not concrete implementations.
High-level modules should be unaware of low-level modules.

6

https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/SOLID#cite_note-7
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

More tried-and-true design principles

• KISS principle (keep it simple, stupid)

• YAGNI principle (you ain’t gonna need it)

• DRY principle (don’t repeat yourself; use abstractions, inheritance)

• High cohension, loose coupling (reduces dependency complexity)

An Introduction to Software Development Design Principles – GeeksforGeeks

https://www.geeksforgeeks.org/an-introduction-to-software-development-design-principles/

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Properties of a good software design
Motivation
Each concept should be motivated by at least one purpose.

Coherence
Each concept should be motivated by at most one purpose.

Fulfillment
Each purpose should motivate at least one concept.

Non-division
Each purpose should motivate at most one concept.

Decoupling
Concepts should not interfere with one another’s fulfillment of purpose.

Design patterns
What is a design pattern?

12

Categories of design patterns, with examples
1. Structural

○ Composite

○ Decorator
2. Behavioral

○ Template method

○ Visitor
3. Creational

○ Singleton

○ Factory (method) 13

Let’s look at code!
(assess its style)

Many thanks to René Just, UW CSE Prof

14

Quiz setup

• Project groups or small teams of neighboring students

• 6 code snippets (same for both rounds)

• Round 1
• For each code snippet, decide if it represents good or bad practice
• Goal: discuss and reach consensus on good or bad practice

• Round 2 (Discussion)
• For each code snippet, try to understand why it is good or bad practice
• Goal: come up with an explanation or a counterargument

15

Round 1: good or bad?

16

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

17

Snippet 2: good or bad?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

18

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

19

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

20

Snippet 5: good or bad?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

21

Snippet 6: good or bad?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

22

23

Round 1: good or bad?

 and Round 2: why?

Spoiler alert - staff opinions

24

• Snippet 1: bad

• Snippet 2: bad

• Snippet 3: good

• Snippet 4: bad

• Snippet 5: bad

• Snippet 6: good

Snippet 1: good or bad?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

25

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

26

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

Null references...the billion dollar mistake.

27

Null references...the billion dollar mistake.

Tony Hoare

28

• Programming languages
• Concurrent

programming
• Creator of quicksort

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

File[] files = getAllLogs();
for (File f : files) {

…
}

Don’t return null; return an empty array instead.
29

Snippet 1: this is bad! why?

public File[] getAllLogs(Directory dir) {
 if (dir == null || !dir.exists() || dir.isEmpty()) {
 return null;
 } else {
 int numLogs = … // determine number of log files
 File[] allLogs = new File[numLogs];
 for (int i=0; i<numLogs; ++i) {
 allLogs[i] = … // populate the array
 }
 return allLogs;
 }
}

No diagnostic information.

30

Snippet 2: good or bad?

public void addStudent(Student student, String
course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

31

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

32

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

Defensive programming: add an assertion (or write the literal first).
Use constants and enums to avoid literal duplication.

33

Snippet 2: short but bad! why?

public void addStudent(Student student, String course) {
 if (course.equals("CSE403")) {
 cse403Students.add(student);
 }
 allStudents.add(student)
}

Return a success/failure value.

34

Snippet 3: good or bad?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

35

Snippet 3: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

36

Snippet 3: this is good, but why?

public enum PaymentType {DEBIT, CREDIT}

public void doTransaction(double amount, PaymentType payType) {
 switch (payType) {
 case DEBIT:
 … // process debit card
 break;
 case CREDIT:
 … // process credit card
 break;
 default:
 throw new IllegalArgumentException("Unexpected payment type");
 }
}

Type safety using an enum; throws an exception for unexpected
cases (e.g., future extensions of PaymentType).

37

Snippet 4: good or bad?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

38

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

39

Snippet 4: also bad! huh?

public int getAbsMax(int x, int y) {
 if (x<0) {
 x = -x;
 }
 if (y<0) {
 y = -y;
 }
 return Math.max(x, y);
}

Avoid reassigning method parameters;
use local variables to sanitize inputs.

(Making parameters final somewhat achieves this.) 40

Snippet 5: good or bad?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

41

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

42

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

What does the last call return
(l.remove(index))?

43

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

Be careful with method overloading,
which is statically resolved.

44

Snippet 5: Java API, but still bad! why?

public class ArrayList<E> {
 public E remove(int index) {
 …
 }
 public boolean remove(Object o) {
 …
 }
 …
}

ArrayList<String> l = new ArrayList<>();
Integer index = Integer.valueOf(1);
l.add(“Hello”);
l.add(“World”);
l.remove(index);

Hesitate to use overloading
and different return values

45

Snippet 6: good or bad?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

46

Snippet 6: this is good, but why?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

47

Snippet 6: this is good, but why?

public class Point {
 private final int x;
 private final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() {
 return this.x;
 }
 public int getY() {
 return this.y;
 }
}

Good encapsulation; immutable object.

48

Additional Design Material
Provided by René Just, UW CSE Professor

Concepts covered in CSE 331 – Software design and implementation

UML crash course

50

UML crash course
The main questions
● What is UML?
● Is it useful, why bother?
● When to (not) use UML?

51

What is UML?
● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

52

What is UML?
● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

53

What is UML?
● Unified Modeling Language.
● Developed in the mid 90’s, improved since.
● Standardized notation for modeling OO systems.
● A collection of diagrams for different viewpoints:

○ Use case diagrams
○ Component diagrams
○ Class and Object diagrams
○ Sequence diagrams
○ Statechart diagrams
○ ...

54

55

Are UML diagrams useful?

Are UML diagrams useful?
Communication
● Forward design (before coding)

○ Brainstorm ideas (on whiteboard or paper).
○ Draft and iterate over software design.

Documentation
● Backward design (after coding)

○ Obtain diagram from source code.

In this class, we will use UML class diagrams mainly for visualization
and discussion purposes.

56

Classes vs. objects
Class
● Grouping of similar objects.

○ Student
○ Car

● Abstraction of common properties and behavior.
○ Student: Name and Student ID
○ Car: Make and Model

Object
● Entity from the real world.
● Instance of a class

○ Student: Joe (4711), Jane (4712), …
○ Car: Audi A6, Honda Civic, ...

57

UML class diagram: basic notation

MyClass

58

UML class diagram: basic notation

MyClass

- attr1 : type

+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) :
<return type>
<param> := <name> : <type>

59

UML class diagram: basic notation

MyClass

- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) :
<return type>
<param> := <name> : <type>

Visibility
- private
~ package-private
protected
+ public

60

UML class diagram: basic notation

MyClass

- attr1 : type
attr2 : type
+ attr3 : type

~ bar(a:type) : ret_type
+ foo() : ret_type

Name

Attributes
<visibility> <name> : <type>

Methods
<visibility> <name>(<param>*) :
<return type>
<param> := <name> : <type>

Static attributes or methods are underlined

Visibility
- private
~ package-private
protected
+ public

61

UML class diagram: concrete example

public class Student
extends Person {

 private int id;

 public Student(String name,
 int id) {

 ...
 }

 public int getId() {
 return this.id;
 }
}

Student

- id : int

+ Student(name:String, id:int)
+ getId() : int

Personpublic class Person {
 ...

}

62

Classes, abstract classes, and interfaces
<<interface>>

MyInterface

MyAbstractClass

{abstract}

MyClass

63

Classes, abstract classes, and interfaces
MyClass

public class
MyClass {

 public void
op() {
 ...
 }

 public int
op2() {
 ...
 }
}

<<interface>>

MyInterface

MyAbstractClass

{abstract}

public abstract class
MyAbstractClass {

 public abstract void
op();

 public int op2() {
 ...
 }
}

public interface
MyInterface {

 public void
op();

 public int
op2();
}Level of detail in a given class or interface may vary and depends on

context and purpose. 64

UML class diagram: Inheritance

SubClass

<<interface>>

AnInterface

SuperClass

public class SubClass extends SuperClass implements AnInterface

is-a relationship

65

UML class diagram: Aggregation & Composition

Part

Whole

Part

Whole

Aggregation Composition

has-a relationship has-a relationship

● Existence of Part does not depend
on the existence of Whole.

● Lifetime of Part does not depend
on Whole.

● No single instance of whole is the unique
owner of Part (might be shared with other
instances of Whole).

● Part cannot exist without Whole.
● Lifetime of Part depends on Whole.
● One instance of Whole is the single

owner of Part.

66

Aggregation or Composition?

Room

Building

Customer

Bank
? ? ? ?

67

Aggregation or Composition?

Room

Building

Customer

Bank

Composition Aggregation

What about class and students or body and body parts?

68

UML class diagram: multiplicity

A B
1 1

Each A is associated with exactly one B
Each B is associated with exactly one A

A B
1..2 *

Each A is associated with any number of Bs
 Each B is associated with exactly one or two As

69

UML class diagram: navigability

A B
Navigability: not specified

A B
Navigability: unidirectional

“can reach B from A”

A B
Navigability: bidirectional

70

UML class diagram: example

71

Summary: UML

● Unified notation for modeling OO systems.

● Allows different levels of abstraction.

● Suitable for design discussions and documentation.

72

OO design principles

73

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

74

Information hiding

MyClass
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
 public int nElem;
 public int capacity;
 public int top;
 public int[] elems;
 public boolean canResize;

 ...

 public void resize(int s){...}
 public void push(int e){...}
 public int capacityLeft(){...}
 public int getNumElem(){...}
 public int pop(){...}
 public int[] getElems(){...}
}

75

Information hiding

MyClass
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

public class MyClass {
 public int nElem;
 public int capacity;
 public int top;
 public int[] elems;
 public boolean canResize;

 ...

 public void resize(int s){...}
 public void push(int e){...}
 public int capacityLeft(){...}
 public int getNumElem(){...}
 public int pop(){...}
 public int[] getElems(){...}
}

What does MyClass do?
76

Information hiding

Stack
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Anything that could be improved in this implementation?

public class Stack {
 public int nElem;
 public int capacity;
 public int top;
 public int[] elems;
 public boolean canResize;

 ...

 public void resize(int s){...}
 public void push(int e){...}
 public int capacityLeft(){...}
 public int getNumElem(){...}
 public int pop(){...}
 public int[] getElems(){...}
}

77

Information hiding

Stack
+ nElem : int

+ capacity : int

+ top : int

+ elems : int[]

+ canResize : bool

+ resize(s:int):void
+ push(e:int):void
+ capacityLeft():int
+ getNumElem():int
+ pop():int
+ getElems():int[]

Stack

+ push(e:int):void
+ pop():int
...

Information hiding:
● Reveal as little information

about internals as possible.
● Segregate public interface and

implementation details.
● Reduces complexity.

- elems : int[]
...

78

Information hiding vs. visibility

Public

???

Private

79

Information hiding vs. visibility

Public

???

Private

● Protected, package-private, or
friend-accessible (C++).

● Not part of the public API.
● Implementation detail that a

subclass/friend may rely on.

80

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

81

A little refresher: what is
Polymorphism?

82

A little refresher: what is Polymorphism?
An object’s ability to provide different behaviors.

Types of polymorphism
● Ad-hoc polymorphism (e.g., operator overloading)

○ a + b ⇒ String vs. int, double, etc.

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden in

subclasses
obj.toString(); and therefore provide a different
behavior.

● Parametric polymorphism (e.g., Java generics)
○ class LinkedList<E> { ⇒ A LinkedList can store elements

 void add(E) {...} regardless of their type but still
 E get(int index) {...} provide full type safety.

83

A little refresher: what is Polymorphism?
An object’s ability to provide different behaviors.

Types of polymorphism

● Subtype polymorphism (e.g., method overriding)
○ Object obj = ...; ⇒ toString() can be overridden

in subclasses
obj.toString(); and therefore provide a
different behavior.

Subtype polymorphism is essential to many OO design principles.

84

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

85

Open/closed principle
Software entities (classes, components, etc.) should
be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
 if (o instanceof Square) {
 drawSquare((Square) o)
 } else if (o instanceof Circle) {
 drawCircle((Circle) o);
 } else {
 ...
 }
}

Good or bad design?

Square

+ drawSquare()

Circle

+ drawCircle()

86

Open/closed principle
Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object o) {
 if (o instanceof Square) {
 drawSquare((Square) o)
 } else if (o instanceof Circle) {
 drawCircle((Circle) o);
 } else {
 ...
 }
}

Violates the open/closed principle!

Square

+ drawSquare()

Circle

+ drawCircle()

87

Open/closed principle
Software entities (classes, components, etc.) should be:
● open for extensions
● closed for modifications

public static void draw(Object s) {
 if (s instanceof Shape) {
 s.draw();
 } else {
 …
 }
}

Square Circle

<<interface>>

Shape

+ draw()

...
public static void draw(Shape s) {
 s.draw();
}

88

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

89

Inheritance: (abstract) classes and
interfaces

LinkedList

SequentialList

{abstract}

90

Inheritance: (abstract) classes and
interfaces

LinkedList

SequentialList

{abstract}

extends

LinkedList extends SequentialList

91

Inheritance: (abstract) classes and
interfaces

LinkedList

<<interface>>

List

SequentialList

{abstract}

extends

<<interface>>

Deque

LinkedList extends SequentialList

92

Inheritance: (abstract) classes and
interfaces

LinkedList

<<interface>>

List

SequentialList

{abstract}

extends
implements

<<interface>>

Deque

implements

LinkedList extends SequentialList implements List, Deque

93

Inheritance: (abstract) classes and interfaces

<<interface>>

List

<<interface>>

Collection

<<interface>>

Iterable

94

Inheritance: (abstract) classes and interfaces

<<interface>>

List

<<interface>>

Collection

extends

<<interface>>

Iterable

List extends Iterable, Collection

95

LinkedList

<<interface>>

List

SequentialList

{abstract}

<<interface>>

Deque

<<interface>>

Collection

extends

extends extends

implements implements

<<interface>>

Iterable

Inheritance: (abstract) classes and interfaces

96

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

97

The “diamond of death”: the problem

A
+ getNum():int

D

C
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

98

The “diamond of death”: the problem

A
+ getNum():int

D

C
+ getNum():int

B
+ getNum():int

...
A a = new D();
int num = a.getNum();
...

Which getNum() method
should be called?

99

The “diamond of death”: concrete example

Animal
+ canFly():bool

Pegasus

Horse
+ canFly():bool

Bird
+ canFly():bool

Can this happen in Java? Yes, with default methods in Java 8+. 100

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

101

Design principles: Liskov substitution principle
Motivating example
We know that a square is a special kind of a
rectangle. So, which of the following OO designs
makes sense?

Rectangle

Square

Square

Rectangle

102

Subtype requirement
Let object x be of type T1 and object y be of type T2.
Further, let T2 be a subtype of T1 (T2 <: T1). Any
provable property about objects of type T1 should be
true for objects of type T2.

Is the subtype requirement fulfilled?

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Design principles: Liskov substitution principle

103

Subtype requirement
Let object x be of type T1 and object y be of type T2.
Further, let T2 be a subtype of T1 (T2 <: T1). Any
provable property about objects of type T1 should be
true for objects of type T2.

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
 new Rectangle(2,2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

104

Subtype requirement
Let object x be of type T1 and object y be of type T2.
Further, let T2 be a subtype of T1 (T2 <: T1). Any
provable property about objects of type T1 should be
true for objects of type T2.

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
 new Rectangle(2,2);
 new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

105

Subtype requirement
Let object x be of type T1 and object y be of type T2.
Further, let T2 be a subtype of T1 (T2 <: T1). Any
provable property about objects of type T1 should be
true for objects of type T2.

Violates the Liskov substitution principle!

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int

Rectangle

Square

Rectangle r =
 new Rectangle(2,2);
 new Square(2);

int A = r.getArea();
int w = r.getWidth();
r.setWidth(w * 2);

assertEquals(A * 2,
r.getArea());

Design principles: Liskov substitution principle

106

Subtype requirement
Let object x be of type T1 and object y be of type T2.
Further, let T2 be a subtype of T1 (T2 <: T1). Any
provable property about objects of type T1 should be
true for objects of type T2.

Rectangle

+ width :int
+ height:int

+ setWidth(w:int)
+ setHeight(h:int)
+ getArea():int Rectangle Square

<<interface>>

Shape

Design principles: Liskov substitution principle

107

OO design principles

● Information hiding (and encapsulation)
● Polymorphism
● Open/closed principle
● Inheritance in Java
● The diamond of death
● Liskov substitution principle
● Composition/aggregation over inheritance

108

Inheritance vs. (Aggregation vs. Composition)

Person

Student

public class
Student
 extends
Person{

 public Student(){
 }

 ...
}

public class Bank {
 Customer c;

 public Bank(Customer
c){
 this.c = c;
 }
 ...
}

Customer

Bank

is-a relationship has-a relationship

Room

Building

public class Building
{
 Room r;

 public Building(){
 this.r = new Room();
 }
 ...
}

109

Design choice: inheritance or composition?

LinkedList

Stack

Hmm, both designs seem valid -- what are pros and cons?

LinkedList

public class Stack<E> implements
List<E> {
 private List<E> l = new
LinkedList<>();
 ...
}

public class Stack<E>
extends

LinkedList<E> {
 ...
}

Stack

List
<<interface>>

List
<<interface>>

110

Design choice: inheritance or composition?

Pros
● No delegation methods required.
● Reuse of common state and behavior.

Cons
● Exposure of all inherited methods

(a client might rely on this particular
superclass -> can’t change it later).

● Changes in superclass are likely to break
subclasses.

Composition/aggregation over inheritance allows more flexibility.

Pros
● Highly flexible and configurable:

no additional subclasses required for
different compositions.

Cons
● All interface methods need to be

implemented -> delegation methods
required, even for code reuse.

LinkedList

Stack

LinkedList

Stack

List
<<interface>>

List
<<interface>>

111

OO design principles: summary

● Information hiding (and encapsulation)
● Open/closed principle
● Liskov substitution principle
● Composition/aggregation over inheritance

112

OO design patterns

113

A first design problem
Weather station revisited

25° F

-3.9° C min: 20° F
max: 35° F

Current 30 day history

Temp. sensor

Reset

Reset history
button

114

What’s a good design for the view
component?

09/01,12°
09/02,14°
...

Client
sees uses

manipulatesupdates

25° F

-3.9° C min: 20° F
max: 35° F

Temp.
sensor

Reset

Reset history
button

115

Weather station: view

ComplexView

<<interface>>

View

+draw(d:Data)

SimpleView GraphView
-views:List<View>

+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

How do we need to
implement

draw(d:Data)?
116

Weather station: view

ComplexView

<<interface>>

View

+draw(d:Data)

SimpleView GraphView
-views:List<View>

+draw(d:Data)
+addView(v:View)

1..n

...View
+draw(d:Data)

public void draw(Data d) {
 for (View v : views) {
 v.draw(d);
 }
}

25° F

-3.9° C min: 20° F
max: 35° F

+draw(d:Data)+draw(d:Data)

117

The general solution: Composite
pattern

Composite

<<interface>>

Component
+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

118

The general solution: Composite
pattern

Composite

<<interface>>

Component
+operation()

CompA CompB
+operation() +operation() -comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Iterate over all composed
components (comps), call
operation() on each, and
potentially aggregate the
results.

119

What is a design pattern?
● Addresses a recurring, common design problem.
● Provides a generalizable solution.
● Provides a common terminology.

120

What is a design pattern?
● Addresses a recurring, common design problem.
● Provides a generalizable solution.
● Provides a common terminology.

Pros
● Improves communication and documentation.
● “Toolbox” for novice developers.

Cons
● Risk of over-engineering.
● Potential impact on system performance.

More than just a name for common sense and best
practices.

121

Design patterns: categories
1. Structural

● Composite
● Decorator
● ...

1. Behavioral
● Template method
● Visitor
● ...

1. Creational
● Singleton
● Factory (method)
● ...

122

Design patterns: categories
1. Structural

● Composite
● Decorator
● ...

1. Behavioral
● Template method
● Visitor
● ...

1. Creational
● Singleton
● Factory (method)
● ...

123

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {
 // do something
}
...

+read():int
+read(buf:byte[]):int

124

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream Problem: filesystem I/O is expensive

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {
 // do something
}
...

+read():int
+read(buf:byte[]):int

125

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

Problem: filesystem I/O is expensive
Solution: use a buffer!

Why not simply implement the
buffering in the client or subclass?

...
InputStream is =

new FileInputStream(...);

int b;
while((b=is.read()) != -1) {
 // do something
}
...

126

Another design problem: I/O streams
<<interface>>

InputStream
+read():int
+read(buf:byte[]):int

FileInputStream
+read():int
+read(buf:byte[]):int

BufferedInputStream
-buffer:byte[]

+BufferedInputStream(is:InputStream)
+read():int
+read(buf:byte[]):int

...
InputStream is =

new BufferedInputStream(
new FileInputStream(...));

int b;
while((b=is.read()) != -1) {
 // do something
}
...

1

Still returns one byte (int) at a time, but
from its buffer, which is filled by calling
read(buf:byte[]).

127

The general solution: Decorator
pattern <<interface>>

Component
+operation()

CompA CompB
+operation() +operation()

1

Decorator

-decorated:Component

+Decorator(d:Component)
+operation()

128

Composite vs. Decorator
<<interface>>

Component
+operation()

CompA
+operation()

1

Composite
-comps:Collection<Component>

+operation()
+addComp(c:Component)
+removeComp(c:Component)

1..n

Decorator

-decorated:Component

+Decorator(d:Component)
+operation()

129

