Architecture and Design
CSE 403 Software Engineering

Today's Outline

Architecture
1. What is architecture
2. How does it differ from design
3. What are some common architectures used in software

% ‘Xfﬁh& RN

N

What does “Architecture” make you think of?

\

ll“llum r

MIT Stata Center by Frank Gehry Paul G. Allen Center by LMN Architects

In contrast, what comes to mind for "Design”?

Here's another example close to home

Bill & Melinda Gates Center for UW CSE - LMN

https://lmnarchitects.com/project/bill-melinda-gates-center

Where do architecture and design fit in?

Requirements

Architecture
Design

Level of abstraction

Source code

ss9204d Juawdolanaq

Definitions

Architecture (what components are needed)

* High-level view of the overall system:
* What components exist?
* What are the connections and/or protocols between components?

Design (how the components are developed)

* Considers one component at a time
 Data representation
* Interfaces, class hierarchy

The level of abstraction is key

Both architecture and design build an
abstract representation of reality

* Ignoring insignificant details (= modeling)
* Focusing on the most important properties
* Considering modularity (separation of concerns) and interconnections

Case study - Linux kernel&

Source code

Suppose you want to add a feature
40 million lines of code!
Where would you start?

* What questions would you ask?

10

Case study - Linux kernel

Call graph

Suppose you want to add a feature
40 million lines of code!
Where would you start?

e What is the flow of control?

11

Case study - Linux kernel

Dependency graph

Suppose you want to add a feature
40 million lines of code!
Where would you start?

elementtree-1.2.

sz Sy * What is the flow of control?
i . ¢ * What components know about one
another?

12

Case study - Linux kernel

Layer diagram
Suppose you want to add a feature

~ User application []] 40 million lines of code!
"GNU C library (glibc) Where would you start?
| System call interface | i
. d / * What is the flow of control?
| poig J * What components know about one
Device drivers | another?

Hardware * How is the code organized into parts?

13

The parts of an architecture

e Components
e (Connections

How would you represent them in a diagram?

14

Box-and-arrow diagrams

Very common and highly valuable.
You must define the parts of the diagram:

----- * “
.

.

;

\\
|
----- D LD
~a 'y - a
bstract
----- ()& -~
.“ ’
:

e Box

e Arrow

T e Layer
_____ *_ ‘“, '
_____ (=) e Adjacent boxes

Legend:
Component

=== Connector
| Eionununication

|

<]Not£ﬁca:¢ions

Requests >

Anoher box and arrow diagram

Third-Party
Software, e.g.,
Torque Engine,

Firefox,
etc.

Any Client Driver

Firefox Plugin

Torque Driver

Listener

Module

Presenter
Module

Very common and highly
valuable.

But what does a box
represent! An arrow?! A
layer? Adjacent boxes?

xPST
Engine

xPST File
(cog. model)

T

xPST Web
Authoring
Tool (WAT)

An architecture: components and connectors

* Components have behavior and perform computations
* abstract data type, filter, database, web browser, etc.

* Connectors define the interconnections between components

* procedure call, event announcement,
asynchronous message sends, socket/file write/read, etc.

* They may sometimes share behavior

* Ex: A connector might (de)serialize data, but can it perform other, richer
computations?

UML diagrams

* UML = universal modeling language
* Astandardized way to describe (draw) architecture

* Also implementation details such as subclassing, uses (dependences), and
much more

* Widely used in industry
* Not the topic of this lecture
» Compare to design patterns

*Critical advice about syntax:

* Use consistent notation: one notation per kind of component or connector

Examples of software architectures

SW Architecture #1 - Pipe and filter

An architecture determines the structure of the

components and how they connect.
Pipe passes

[/ the data
Filters

‘m}m» -3 Filter @@‘

|

sink

Filter computes e |t doesn’t specify the design or implementation details
on the data of the individual components (the filters)
e \What about the format of the pipe data? 20

Pipe and filter — let's try it

Goal: a histogram of the CSE 403 letter grades

B,CSE403,]Joe
B,CSE503,Joe
A,CSE403,]Jane
A,CSE403,Lin

2?7

2A
1B

21

SW Architecture #1 — Pipe and filter

The architecture consists of components and successive filtering.

B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin

=

Process1() -> Process2() -> Processn()

=

2A
1B

m

22

SW Architecture #1 — Pipe and filter

The architecture consists of components and successive filtering.

B,CSE403,Joe
B,CSE503,Joe
A,CSE403,Jane
A,CSE403,Lin

=

Process1() -> Process2() -> Processn()

=

2A
1B

Let's design a Unix pipeline to perform this task.

23

SW Architecture #1 — Pipe and filter

The design specifies the components’ inputs and outputs.

B,CSE403,JO€ 2 A
B,CSE503,Joe 1B
A CSE403,Jane :> Input() -> Select() -> Order() -> Count() :>
A,CSE403,Lin e
B,CSE403 Joe B,CSE403 Joe B A 2 A
B,CSE503,Joe = ACSE403,Jane = A T A T 1B
A CSE403,Jane A,CSE403,Lin A B

A,CSE403,Lin

24

SW Architecture #1 — Pipe and filter

Finally, you get to code

B,CSE403,Joe 2 A
B,CSE503,Joe :> grep CSE403 grades.csv | cut -f1-d /| :> 1B
A,CSE403,Jane sort | uniq -c
A,CSE403,Lin \/
B,CSE403,Joe B,CSE403,Joe B A 2A
B,CSE503,Joe = ACSE403Jane = A = A 18
A,CSE403,]Jane A,CSE403,Lin A B
A,CSE403,Lin

What are the pros and cons of this design?

An architectural style imposes constraints

* Pipes & filters
* Pipes must compute local transformations
* Filters must not share state with other filters
* There must be no cycles
* If these constraints are violated, it's not a pipe & filter system
* One can't tell all of this from a picture
* One can formalize these constraints

scan —l parse —l optimize —l generate

An architectural style imposes constraints

* Pipes & filters
* Pipes must compute local transformations
* Filters must not share state with other filters
* There must be no cycles
* If these constraints are violated, it's not a pipe & filter system
* One can't tell all of this from a picture
* One can formalize these constraints

scan —l parse

optimize —l generate

—
i .
Common, but not pipe-and-filter

SW Architecture #2 - Layered (n-tier)

* Layers use services
Layer 3.1 Layer 3.2 provided (only) by the

layers directly below them

Layer 2 * Layers of isolation - limits

dependencies

Layer 1 * Good modularity and

separation of concerns

28

SW Architecture #2 - Layered

Enterprise System Architecture

Linux Architecture : .

3 q
User application []] : Customer [@----- Customer
) L Presentation Layer o | Delegate

"GNU C library (glibc) | :

7
w i
System call interface Business Layer _ ____ _

- - [.)

9 1 i
s Pﬁos / cons’ = .
; Ord
Davica drivers } Persistence Layer

Hardware] |
Database Layer ‘- “_'_".'.f -

Source: https://www.oreilly.com/ideas/software-architecture-patterns/page/2/layered-architecture

29

SW Architecture #2 - Layered

Support Services
& daemons

Dedicated Network & External

Libraries

Operating
System

Runs on all
Service and IO
Nodes

RAID IO
0 e |7
Node c< @
3 = Q.
2. g2
SN
10 & FS Q.
| daemons
RCA daemon
Linux
Portals RCA g)
Parallel File Systems 10 & Network g
Nodes only o
: S
10GigE
A Driver
Portals Driver Support | |_FC Driver
rd
Integratlon Source

Application

code

Message
passing
code

Low Level
Network
code

30

SW Architecture #3 - Client-Server

Client

0
=

What are pros
and cons?

How can you
avoid the
cons?

Request sl
ResSponse dm——

Server

Clients can be software that depends on a
shared database/service

31

SW Architecture combinations!

Client-Server may be too high a level of abstraction (too few details) for
your purpose. Consider combining with other patterns (e.g., layered).

Presentation layer

Business logic layer
()
Data access layer m

32

SW Architecture combinations 2

How detailed

should an Presentation layer

architecture))

description be? Business logic layer
Data access layer

< <
S

33

SW Architecture #4 —
Model-View-Controller (MVC)

Separates

* data representation (Model) @
* visualization (View)

S . sees uses
e client interaction (Controller)
/ D}
View Controller

upd;& ’Anipulates
Model

34

SW Architecture #4 — MVC Example

Current

30 day history

54 F

=

12.2 C

Max: 60 F
Min: 52 F

09/09, 8am, 50
09/09, 4pm, 51
09/10, 8am, 52
09/10, 4pm, 54

47.6 °N, 122.33 "W

Seattle, WA Weather Conditions

-~ 54° SEATTLE-TACOMA INTERNATIONAL AIRPORT

TODAY HOURLY 10-DAY C

(@ 11:52 AM PDT on October 10, 2023 (GMT -7) | Updated just now

e

Cloudy

Today's temperature is forecast to be NEARLY THE

SAME as yesterday.

SW Architecture #4 — MVC Example

Current 30 day history
54 F
—~
Max: 60 F
12.2C Min: 52 F

09/09, 8am, 50
09/09, 4pm, 51
09/10, 8am, 52
09/10, 4pm, 54

36

SW Architecture - many variants of MVC

" wocer

" wocer

Consider the connections (* == many)

37

Blackboard architectures

The knowledge sources: separate,
independent units of application dependent
knowledge. No direct interaction among
knowledge sources

The blackboard data structure:
problem-solving state data. Knowledge
sources make changes to the blackboard that
lead incrementally to a solution to the
problem.

Control: driven entirely by state of
blackboard. Knowledge sources respond
opportunistically to changes in the

blackboard.

Simple Blackboard

Blackboard

Knowledge
Source

Knowledge
Source

Knowledge
Source

Useful for applications requiring complex interpretations of data, such as

reasoning, speech, and pattern recognition.

Hearsay-Il: blackboard

Hearsay-II Instance of Blackboard

Blackbuard T
e
Lewein K b Action

e e r——y
] ot
:

Level 3
Lot 2 : [_comtion Ju——|
g [
"
Level | lockboard Sriovalics

Chavge Besponge Frawe

Hiackbosed | Schedoling
Moaites — Qe e

)

)

Focus of
Costrel Schedulet
= - { Comtrul (im Dotn Oow |
@wmc Architectures

As an architect (and designer), consider ...

Level of Abstraction

« Components (modules) and their interconnections (APIs)

Separation of concerns

* Strong cohesion - tight relationships within a component (module)

* Loose coupling - interconnections between components (module)

Modularity
« Decomposable designs
* Composable components
* Localized changes (due to requirement changes)

* Span of impact (how far can an error spread)

40

Properties of a good architecture

* Satisfies functional and performance requirements
* Manages complexity

* Accommodates future change

* Is concerned with

* reliability, safety, understandability, compatibility, robustness, ...

Divide and conquer

* Benefits of decomposition:
* Decrease size of tasks
* Support independent testing and analysis
* Separate work assignments
* Ease understanding

* Use of abstraction leads to modularity

* Implementation techniques: information hiding, interfaces
* To achieve modularity, you need:

* Strong cohesion within a component

* Loose coupling between components
* And these properties should be true at each level

An architecture helps with

System understanding: interactions between modules
Reuse: high-level view shows opportunity for reuse

Construction: breaks development down into work items; provides a
path from requirements to code

Evolution: high-level view shows evolution path
Management: helps understand work items and track progress
Communication: provides vocabulary; a picture says 1000 words

Qualities of modular software

* decomposable
* can be broken down into pieces

* composable
* pieces are useful and can be combined

* understandable
* one piece can be examined in isolation

* has continuity
* change in regs affects few modules

* protected / safe
* an error affects few other modules

Interface and implementation

* public interface: data and behavior of the object that can be seen
and executed externally by "client” code

* private implementation: internal data and methods in the object,

used to help implement the public interface, but cannot be directly
accessed

* client: code that uses your class/subsystem

Example: radio
* public interface is the speaker, volume buttons, station dial

* private implementation is the guts of the radio; the transistors, capacitors,
voltage readings, frequencies, etc. that user should not see

Summary

* An architecture provides a high-level framework
to build and evolve a software system.

» Strive for modularity: strong cohesion and loose
coupling.
* Consider using existing

architectural styles
or patterns.

SEEEEERNE T

. gy Wl

a7

Bonus slides

48

Properties of architecture

* Coupling
* Cohesion
* Style conformity
* Matching

Coupling (loose vs. tight)

* Coupling: the kind and quantity of interconnections among modules

* Modules that are loosely coupled (or uncoupled) are better than those
that are tightly coupled

* The more tightly coupled two modules are, the harder it is to work with
them separately

Tightly or loosely coupled?

User Interface

-End21

Graphics

-EnBhd2

-End3

I

-Endé

: -End16
-End23
-End26 : -End24

-End11
-End4 - ’ -
Ends Application Level Classes
Data Storage
-End13

"Ends End7 | / -End19

-End12 -End14 Ends Eng20
T |Business Rules| ™" ——
—— |Enterprise Level Tools

-End17

-End22

Tightly or loosely coupled?

Data Storage

User Interface | -&a

Graphics

-End11

-End5
* -End3

-End6

-End12

Application Level Classes

-End7

-End15

-End16

-End13

-End14

Business Rules| == |Enterprise Level Tools

-End8

-End4

Cohesion (strong vs. weak)

* Cohesion: how closely the operations in a module are related
* Tight relationships improve clarity and understanding
* A class with good abstraction usually has strong internal cohension

* No schizophrenic classes!

Strong or weak cohesion?

class Employee {

public:

FullName GetName() const;
Address GetAddress() const;
PhoneNumber GetWorkPhone() const;

b.éol IsJobClassificationValid(JobClassification jobClass);
bool IsZipCodeValid (Address address);
bool IsPhoneNumberValid (PhoneNumber phoneNumber);

'éqIQuery GetQueryToCreateNewEmployee() const;
SqlQuery GetQueryToModifyEmployee() const;
SqlQuery GetQueryToRetrieveEmployee() const;

Style conformity: What is a style?

* An architectural style defines
* The vocabulary of components and connectors for a family (style)
* Constraints on the elements and their combination

* Topological constraints (no cycles, register/announce relationships, etc.)

* Execution constraints (timing, etc.)

* By choosing a style, one gets all the known properties of that style (for
in that style)

* For example: performance, lack of deadlock, ease of making particular classes

An architectural style imposes constraints

* Pipes & filters
* Pipes must compute local transformations
* Filters must not share state with other filters
* There must be no cycles
* If these constraints are violated, it's not a pipe & filter system
* One can't tell this from a picture
* One can formalize these constraints

scan —l parse —l optimize —l generate

The design and the reality

* The code is often less clean than the design

* The design is still useful
* communication among team members
* selected deviations can be explained more concisely and with clearer reasonir

Architectural mismatch

* Some components are inherently incompatible
* Assumptions about memory allocation, vs. custom allocator
* Use of two frameworks (assumes it is main)
* Library wants to operate first or last
* Data formats

* Assumed infrastructure

Views

A view illuminates a set of top-level design decisions

* how the system Is composed of interacting parts

« where are the main pathways of interaction

* Kkey properties of the parts

« Information to allow high-level analysis and appraisal

Importance of views

Multiple views are needed to understand the different dimensions of

systems

Functional
Requirements

Performance
(execution)
Requirements

i e a5 ;)
\ r; .'. . :" .
% i

Design View Implementation
View
Classes, Interfaces, <« @&

\Collabaations Cl;:oes “ .’ 3 Corrponentv
G-—-,! Use Case View ','\
- s

\.
Process View Deployment
View
\Active Classes / \ NodeS/

Packaging
Requirements

Installation
Requirements

Booch

