
Architecture and Design
CSE 403 Software Engineering

Today’s Outline

Architecture
1. What is architecture
2. How does it differ from design
3. What are some common architectures used in software

2

3

What does “Architecture” make you think of?

Paul G. Allen Center by LMN Architects MIT Stata Center by Frank Gehry

In contrast, what comes to mind for “Design”?

Here’s another example close to home

6

Bill & Melinda Gates Center for UW CSE - LMN

https://lmnarchitects.com/project/bill-melinda-gates-center

Where do architecture and design fit in?

7

Requirements

Architecture

Design

Source code

D
evelo

p
m

ent p
ro

cess

Le
ve

l o
f

ab
st

ra
ct

io
n

Definitions

8

Architecture (what components are needed)
• High-level view of the overall system:

• What components exist?
• What are the connections and/or protocols between components?

Design (how the components are developed)
• Considers one component at a time

• Data representation
• Interfaces, class hierarchy

The level of abstraction is key

Both architecture and design build an

abstract representation of reality

• Ignoring insignificant details (= modeling)
• Focusing on the most important properties
• Considering modularity (separation of concerns) and interconnections

9

Case study – Linux kernel

10

Source code

Suppose you want to add a feature
40 million lines of code!

Where would you start?

• What questions would you ask?

Case study – Linux kernel

11

Call graph

Suppose you want to add a feature
40 million lines of code!

Where would you start?

• What is the flow of control?

Case study – Linux kernel

12

Suppose you want to add a feature
40 million lines of code!

Where would you start?

• What is the flow of control?
• What components know about one

another?

Dependency graph

Case study – Linux kernel

13

Layer diagram
Suppose you want to add a feature

40 million lines of code!
Where would you start?

• What is the flow of control?
• What components know about one

another?
• How is the code organized into parts?

The parts of an architecture

● Components
● Connections

How would you represent them in a diagram?

14

Box-and-arrow diagrams

Very common and highly valuable.
You must define the parts of the diagram:
• Box
• Arrow
• Layer
• Adjacent boxes

Anoher box and arrow diagram

An architecture: components and connectors

• Components have behavior and perform computations
• abstract data type, filter, database, web browser, etc.

• Connectors define the interconnections between components
• procedure call, event announcement,

asynchronous message sends, socket/file write/read, etc.

• They may sometimes share behavior
• Ex: A connector might (de)serialize data, but can it perform other, richer

computations?

UML diagrams

• UML = universal modeling language
• A standardized way to describe (draw) architecture

• Also implementation details such as subclassing, uses (dependences), and
much more

• Widely used in industry
• Not the topic of this lecture
• Compare to design patterns

•Critical advice about syntax:
• Use consistent notation: one notation per kind of component or connector

Examples of software architectures

19

SW Architecture #1 – Pipe and filter

20

● It doesn’t specify the design or implementation details
of the individual components (the filters)

● What about the format of the pipe data?

An architecture determines the structure of the
components and how they connect.

Filter computes
on the data

Pipe passes
the data

Pipe and filter – let’s try it

Goal: a histogram of the CSE 403 letter grades

21

???

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

SW Architecture #1 – Pipe and filter

The architecture consists of components and successive filtering.

22

Process1() -> Process2() -> Processn()

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

SW Architecture #1 – Pipe and filter

The architecture consists of components and successive filtering.

23

Process1() -> Process2() -> Processn()

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

Let’s design a Unix pipeline to perform this task.

SW Architecture #1 – Pipe and filter

The design specifies the components’ inputs and outputs.

24

Input() -> Select() -> Order() -> Count()

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

B,CSE403,Joe

A,CSE403,Jane

A,CSE403,Lin

B

A

A

A

A

B

2 A

1 B

SW Architecture #1 – Pipe and filter

Finally, you get to code

25

grep CSE403 grades.csv | cut -f1 -d ‘,’ |
sort | uniq -c

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

…

2 A
1 B
…

B,CSE403,Joe

B,CSE503,Joe

A,CSE403,Jane

A,CSE403,Lin

B,CSE403,Joe

A,CSE403,Jane

A,CSE403,Lin

B

A

A

A

A

B

2 A

1 B

What are the pros and cons of this design?

An architectural style imposes constraints

• Pipes & filters
• Pipes must compute local transformations
• Filters must not share state with other filters
• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell all of this from a picture
• One can formalize these constraints

scan parse optimize generate

An architectural style imposes constraints

• Pipes & filters
• Pipes must compute local transformations
• Filters must not share state with other filters
• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell all of this from a picture
• One can formalize these constraints

scan parse optimize generate

Database Common, but not pipe-and-filter

SW Architecture #2 – Layered (n-tier)

28

Layer 1

Layer 2

 Layer 3.1 Layer 3.2
• Layers use services

provided (only) by the
layers directly below them

• Layers of isolation – limits
dependencies

• Good modularity and
separation of concerns

SW Architecture #2 – Layered

29

Linux Architecture
Enterprise System Architecture

Pros / cons?

SW Architecture #2 – Layered

30

Allocator PBS
mom

Job
Launch

Compile
r PerfToolTotalVie

w

Login
Node

Showmesh

LinuxLibraries

User Space

Boot

Portals

Portals
Driver IP

Portals Driver Support RCA

RCA

RCA daemon

Parallel File Systems

Support Services
& daemons

C
om

m
on

Operating
System

3rd Party CustomCustom Open
Source

3rd Party
 Integration

User’s
Environment

Account
ing

DBPBS srv

Server
Node

Dedicated Server
Functions

IO & FS
daemons

IO
Node

IO & Network
Nodes only

FC Driver

10GigE
Driver

Dedicated Network & External
RAID IO S

pecialized
by N

ode
Function

Runs on all
Service and IO

Nodes

Low Level
Network

code

Message
passing

code

Application
code

FC Driver

SW Architecture #3 – Client-Server

31

Client

Server

Clients can be software that depends on a
shared database/service

What are pros
and cons?

How can you
avoid the

cons?

SW Architecture combinations!

32

Client-Server may be too high a level of abstraction (too few details) for
your purpose. Consider combining with other patterns (e.g., layered).

Presentation layer

Business logic layer

Data access layer DB

Client YClient X

SW Architecture combinations^2

33

How detailed
should an
architecture
description be?

Presentation layer

Business logic layer

Client Y

Data access layer

Client X

DB cDB a DB b

SW Architecture #4 –
Model-View-Controller (MVC)

34

View Controller

Model

Client
sees uses

manipulatesupdates

Separates
• data representation (Model)
• visualization (View)
• client interaction (Controller)

SW Architecture #4 – MVC Example

35

54 F

12.2 C
Max: 60 F
Min: 52 F

Current 30 day history

Reset

09/09, 8am, 50
09/09, 4pm, 51
09/10, 8am, 52
09/10, 4pm, 54

…

SW Architecture #4 – MVC Example

36

54 F

12.2 C
Max: 60 F
Min: 52 F

Current 30 day history

Reset

09/09, 8am, 50
09/09, 4pm, 51
09/10, 8am, 52
09/10, 4pm, 54

…

SW Architecture – many variants of MVC

37

Consider the connections (* == many)

Blackboard architectures
• The knowledge sources: separate,

independent units of application dependent
knowledge. No direct interaction among
knowledge sources

• The blackboard data structure:
problem-solving state data. Knowledge
sources make changes to the blackboard that
lead incrementally to a solution to the
problem.

• Control: driven entirely by state of
blackboard. Knowledge sources respond
opportunistically to changes in the
blackboard.

38

Useful for applications requiring complex interpretations of data, such as
reasoning, speech, and pattern recognition.

Hearsay-II: blackboard

39

As an architect (and designer), consider …

40

Level of Abstraction

• Components (modules) and their interconnections (APIs)

Separation of concerns

• Strong cohesion – tight relationships within a component (module)

• Loose coupling – interconnections between components (module)

Modularity

• Decomposable designs

• Composable components

• Localized changes (due to requirement changes)

• Span of impact (how far can an error spread)

41

Properties of a good architecture

• Satisfies functional and performance requirements

• Manages complexity

• Accommodates future change

• Is concerned with
• reliability, safety, understandability, compatibility, robustness, …

Divide and conquer
• Benefits of decomposition:

• Decrease size of tasks
• Support independent testing and analysis
• Separate work assignments
• Ease understanding

• Use of abstraction leads to modularity
• Implementation techniques: information hiding, interfaces

• To achieve modularity, you need:
• Strong cohesion within a component
• Loose coupling between components
• And these properties should be true at each level

An architecture helps with

System understanding: interactions between modules
Reuse: high-level view shows opportunity for reuse
Construction: breaks development down into work items; provides a
path from requirements to code
Evolution: high-level view shows evolution path
Management: helps understand work items and track progress
Communication: provides vocabulary; a picture says 1000 words

Qualities of modular software
• decomposable

• can be broken down into pieces

• composable
• pieces are useful and can be combined

• understandable
• one piece can be examined in isolation

• has continuity
• change in reqs affects few modules

• protected / safe
• an error affects few other modules

Interface and implementation

• public interface: data and behavior of the object that can be seen
and executed externally by "client" code

• private implementation: internal data and methods in the object,
used to help implement the public interface, but cannot be directly
accessed

• client: code that uses your class/subsystem

Example: radio
• public interface is the speaker, volume buttons, station dial

• private implementation is the guts of the radio; the transistors, capacitors,
voltage readings, frequencies, etc. that user should not see 45

Summary

• An architecture provides a high-level framework
to build and evolve a software system.

• Strive for modularity: strong cohesion and loose
coupling.

• Consider using existing
architectural styles
or patterns.

47

Bonus slides

48

Properties of architecture

• Coupling

• Cohesion

• Style conformity

• Matching

Coupling (loose vs. tight)
• Coupling: the kind and quantity of interconnections among modules

• Modules that are loosely coupled (or uncoupled) are better than those
that are tightly coupled

• The more tightly coupled two modules are, the harder it is to work with
them separately

Tightly or loosely coupled?

Tightly or loosely coupled?

Cohesion (strong vs. weak)

• Cohesion: how closely the operations in a module are related

• Tight relationships improve clarity and understanding

• A class with good abstraction usually has strong internal cohension

• No schizophrenic classes!

Strong or weak cohesion?
class Employee {

public:
 …
 FullName GetName() const;
 Address GetAddress() const;
 PhoneNumber GetWorkPhone() const;
 …
 bool IsJobClassificationValid(JobClassification jobClass);
 bool IsZipCodeValid (Address address);
 bool IsPhoneNumberValid (PhoneNumber phoneNumber);
 …
 SqlQuery GetQueryToCreateNewEmployee() const;
 SqlQuery GetQueryToModifyEmployee() const;
 SqlQuery GetQueryToRetrieveEmployee() const;
 …
}

Style conformity: What is a style?

• An architectural style defines
• The vocabulary of components and connectors for a family (style)

• Constraints on the elements and their combination
• Topological constraints (no cycles, register/announce relationships, etc.)

• Execution constraints (timing, etc.)

• By choosing a style, one gets all the known properties of that style (for any architecture
in that style)
• For example: performance, lack of deadlock, ease of making particular classes of changes, etc.

An architectural style imposes constraints

• Pipes & filters
• Pipes must compute local transformations
• Filters must not share state with other filters
• There must be no cycles

• If these constraints are violated, it’s not a pipe & filter system
• One can’t tell this from a picture
• One can formalize these constraints

scan parse optimize generate

The design and the reality

• The code is often less clean than the design

• The design is still useful
• communication among team members
• selected deviations can be explained more concisely and with clearer reasoning

Architectural mismatch

• Some components are inherently incompatible
• Assumptions about memory allocation, vs. custom allocator

• Use of two frameworks (assumes it is main)

• Library wants to operate first or last

• Data formats

• Assumed infrastructure

Views
A view illuminates a set of top-level design decisions
• how the system is composed of interacting parts
• where are the main pathways of interaction
• key properties of the parts
• information to allow high-level analysis and appraisal

Importance of views
Multiple views are needed to understand the different dimensions of

systems

Functional
Requirements

Performance
(execution)
Requirements

Packaging
Requirements

Installation
Requirements

Booch

