
Version control and Git
UW CSE 403

Why use version control?

11:51pm

Why use version control?

11:51pm 11:57pm

Why use version control? – backup/restore

11:51pm 11:57pm 11:58pm 11:59pm

❌

Why use version control? – teamwork

5

How are you going to make sense of this?

Goals of a version control system

Version control records changes to a set of files over time.

This enables you to:

○ Keep a history of your work
■ Summary commit title
■ See which lines were co-changed

○ Checkpoint specific versions (known good state)
■ Recover specific state

○ Binary search over revisions
■ Find the one that introduced a defect

○ Undo arbitrary changes
■ Without affecting prior or subsequent changes

○ Maintain multiple releases of your product

Who uses version control?

Everyone should use version control
● Large teams (100+ developers)
● Small teams (2-10+ developers)
● Yourself (and your future self)

○ Multiple features or multiple computers

Example application domains
● Software development
● Hardware development
● Research & experiments (infrastructure and data)
● Applications (e.g., (cloud-based) services)
● Services that manage artifacts (e.g., legal, accounting, business, …)

Version control for documents

11:51pm

Version control

Working by yourself

● One central repository.
It stores a history of project versions.

● Each user has a working copy.

● A user commits file changes
to the repository.

● Committed changes are immediately
visible to teammates who update.

● Examples: SVN (Subversion), CVS.

Centralized version control (the old way)

Distributed version control (the new way)

● Multiple copies of a repository. Each
stores its own history of project
versions.

● Each user commits to a local
(private) repository.

● All committed changes remain local
unless pushed to another repository.

● No external changes are visible
unless fetched from another repository.

● Examples: Git, Hg (Mercurial).

Typical workflow

git pull
git branch name
git switch name
Repeat:

<edit files, run tests>
[git add]
git commit
git pull

<run tests again>
git push
<make a GitHub pull request>

git checkout -b name

git commit filename

An example git workflow

13

● git clone (copy remote repo locally)
● Create branch: git branch name
● Switch to branch: git switch name

OR git checkout name
● Create & switch: git checkout -b

name
● Loop:

○ develop
○ git add (stage changes)
○ git commit (local commit)
○ git pull (merge changes in

remote with local)
○ resolve conflicts

● git push (copy local changes to
remote repository)

● Make GitHub pull request

Remote
(shared)

Local
(individual)

Other useful git commands

git diff: what changes are in the working copy?
git diff --staged: what changes are in the staging area?
git status: what files are in the working copy & staging area?
git log [--graph]: see the history of commits
git {annotate,blame,praise}: who last changed each line?
git cherry-pick: apply identified commits to current branch
git bisect: run binary search to find a bad commit

2 different version control modes

A little quiz

Branch
vs
Clone
Vs
Fork

Multiple versions of your program

What if you have to support:
• Version 1.0.4 and version 2.0.0
• Windows and macOS
• Adding a feature
• Fixing a bug

Git has 3 ways to represent multiple histories:
● Branch: Start a parallel history of changes to the code in the

repository
● Clone: Make a copy of the repository to work on code changes
● Fork: Make a copy the repository that will not necessarily be

merged back with original (but can be through a pull request)

Branches

• A branch is a history of program versions
• There is one main development branch (main, master, trunk)

○ It should always pass tests and be ready to ship or deploy

main
branch

a commit represents
one state of the project

HEAD is the most
recent commit

Branches

• Other branches are alternate histories
• You can create many branches

○ Lightweight - every work item (feature, bug fix) has its own branch
■ Use of many branches prevents cross-pollution

• Branches (histories) can get out of sync

main
branch

feature
branch

Merging branches

• Branches can get out of sync
• Merge incorporates changes from one branch into another
• From a feature branch, run: git merge main

• Life goal of a branch is to be merged into main and deleted as
quickly as possible
○ Done via a pull request, not via git merge

main
branch

feature
branch

a merge commit has
more than one parent

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

Why
both?

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

same diff

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

same diff

What are the pros
and cons of each?

3 ways to resolve a pull request

feature
branch

main
branch

feature
branch

main
branch

feature
branch

main
branch

merge

rebase

squash
& merge

same
project
state

same diff

Merge conflicts

Parallel edits

You and a teammate edit at the same time.
Merging is integrating your changes, keeping all edits.
The VCS tries to merge the edits for you.

If the VCS fails, there is a conflict.
You must resolve the conflict manually.

There are three versions of the code: ancestor
my

changes

their
changes

Conflicts

● The person doing the merge needs to resolve the conflict by
manual editing

● When you run git merge, git attempts to retain all the changes
from each branch

● A conflict arises when two users change the same line of a file
or adjacent lines

Conflicts

● The person doing the merge needs to resolve the conflict by
manual editing

● When you run git merge, git attempts to retain all the changes
from each branch

● A conflict arises when two users change the same line of a file

git’s merge tools
can make mistakes

or adjacent lines

Merge algorithm failure: unable to merge

● Line-by-line merge
yields a conflict

● Inspection reveals
they can be merged

Initial code

Change 1 Change 2

Merged (unachievable by
line-based merge)

Works despite
changes on
same line

Git’s output:
“merge conflict”

Merge algorithm failure: clean, incorrect merge

● Line-by-line merge
yields no conflicts
(“clean merge”)

● Resulting code is
incorrect

Initial code

Change 1 Change 2

Merged (incorrectly)

Function name changed

Function name not changed

Darcs can record word substitution
(for code refactoring)

Rebasing
(= rewriting the commit history)

feature
branch

main
branch

rebase

Rebasing
(= rewriting the commit history)

feature
branch

main
branch

rebase

same
project
state

what relationship?

Rebasing
(= rewriting the commit history)

Don’t.

Any questions?

feature
branch

main
branch

rebase

More seriously: why not?

How to avoid merge conflicts

Synchronize with teammates often

● Pull often

○ Avoid getting behind the main branch

● Push as often as practical

○ Don’t destabilize the main branch (don’t break the build)

○ Use continuous integration

■ automatic testing on each PR and push, even for branches

○ Avoid long-lived branches (make frequent, small pull requests)

Commit often

● On the main branch (or any long-lived branch):
1. Every commit should address one concept (see next
slide); commits created only via pull requests
2. Every concept should be in one commit
3. Tests should always pass

● On feature/bugfix branches:
1. Each merged branch should address one concern
2. Don’t worry about the commit history
3. Get changes into main via a PR; squash and merge it

Make single-concern branches and commits

They are easier to understand, review, merge, revert.
Ways to achieve single-concern branches and commits:
● Do only one task at a time

○ Commit after each one

● Create a branch for each simultaneous task
○ Easier to share work with teammates

○ Single-concern branch ⇒ Single-concern commit on main

○ Requires a bit of bookkeeping to keep track of them all (but worth it)

○ Potential for merge conflicts

● Do multiple tasks in one branch ☹
○ Commit only specific files, or only specific parts of files

■ use Git’s “staging area” with git add; can interactively choose parts of files

I create a
working copy
per branch.

Do not commit all files

Use a .gitignore file

Don’t commit:
● Binary files
● Log files
● Generated files
● Temporary files
Committing would waste space and lead to merge conflicts

Plan ahead to avoid merge conflicts

● Modularize your work

○ Divide work so that individuals or subteams “own” parts of the code

○ Other team members only need to understand its specification

○ Requires good documentation

● Communicate about changes that may conflict
○ Examples (rare!): reformat whole codebase, move directories, rename

fundamental data structures

Cloning

Clone
(copy on local host)

• git clone creates a local copy of the repo and a working
copy of the files for editing

• Ideal for contributing to a repo alongside other
developers

 GitHub (remote)• git push sends
local changes to
remote repo

Forking (GitHub concept, not a git concept)

• Creates a new, unrelated repository (GitHub project) that
is initially an exact copy (including SHAs)

• Changes to either repository do not affect the other
• You can evolve the fork without impacting the upstream
• If original repo is deleted, forked repo will still exist

Fork
(full independent copy)

• It’s possible to update the original but only with pull
requests (original owner approves or not)

GitHub

Choose between branch, clone, or fork

Scenario: CSE403 Class Materials GitHub Repo

1. Fix bugs in assignment 1
2. Work on my laptop
3. CSE413 will build upon CSE403
4. A new quarter of CSE 403

What is this Git command?
NAME
 git-______ - ______ file contents to the index
SYNOPSIS
 git ______ [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically ______s the
current content of existing paths as a whole, but with some options it can also
be used to ______ content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

What is this Git command?
NAME
 git-add - Adds file contents to the index
SYNOPSIS
 git add [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically adds the
current content of existing paths as a whole, but with some options it can also
be used to add content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

Git: concepts and terminology
SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

Git: concepts and terminology
SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS
git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit]

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS
git-resign-index [--snap-file] [--direct-change]

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git: concepts and terminology
SYNOPSIS
git-diff-index [-m] [--cached] [<common diff options>] <tree-ish> [<path>…]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS
git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit]

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS
git-resign-index [--snap-file] [--direct-change]

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git’s confusing vocabulary

● content: git tracks what is in a file, not the file itself
● tree: git's representation of a file system
● working tree: tree representing the local working copy
● commit: a snapshot of the working tree (a database entry)
● SHA: a unique identifier for a commit
● ref: pointer to a commit object
● branch: just a (special) ref; represents a line of development
● HEAD: a ref pointing to the working tree
● staged: ready to be committed (you ran git add)
● index: staging area (located in .git/index)

Ask me anything

Learn more!

● Other resources: explanations, tips, best practices
○ GitHub git cheat sheet
○ Michael Ernst: VC Concepts and Pull Requests
○ Atlassian merge vs rebase (but don’t rebase)
○ Git branching and merging
○ Video tutorial “Git, GitHub, & GitHub Desktop”
○ Learn Git Branching

https://training.github.com/downloads/github-git-cheat-sheet/
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE
https://learngitbranching.js.org/

