Version control and Git

UW CSE 403

THISIS GIT. IT TRACKS COLLABORATIVE LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

CoOL. HoU DO WeVSE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEM TO SINC UP
IF YOU GET ERRORS, SAVE. YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

%@W

Why use version control?

Why use version control?

Why use version control? — backup/restore

K

Essay Essay FINAL Essay FINAL Essay FINAL

11:51pm 11:57pm 11:58pm 11:59pm

Why use version control? — teamwork

z g

g o

Common App Common App Common App Common App Common App Common App Common App Common App
Essay Essay EDITED Essay FINAL Essay FINAL Essay FINAL Essay OKAY THIS Essay REVISED Essay REVISED
FINAL FINAL REVISED IS THE FINAL FINAL
ONE

How are you going to make sense of this?

Goals of a version control system

Version control records changes to a set of files over time.

This enables you to:

o Keep a history of your work
m Summary commit title
m See which lines were co-changed

o Checkpoint specific versions (known good state)
m Recover specific state

o Binary search over revisions
m Find the one that introduced a defect

o Undo arbitrary changes
m Without affecting prior or subsequent changes

o Maintain multiple releases of your product

. d it? Ne d
Who uses version control? reect youco

Everyone should use version control ‘ 'nét_?" %
|

e Large teams (100+ developers)

e Small teams (2-10+ developers)

e Yourself (and your future self)
o Multiple features or multiple computers

Example application domains

e Software development

Hardware development

Research & experiments (infrastructure and data)

Applications (e.g., (cloud-based) services)

Services that manage artifacts (e.g., legal, accounting, business, ...)

Version control for documents Versionisony

Common App
Essay

11:51pm

File Edit View Insert Format
0 New

£ Open

-] Import slides

D Make a copy
[Save as Google Slides

&+ Share
& Email

4 Download

2. Rename
5 Move
(&, Add shortcut to Drive

T Move to trash

£ Version history

® Make available offline

(@ Details

@ Language

[Page setup

[Q Print preview

& Print

All versions

Tuesday

slide Arrange Tools Poll Everywhere Help Acces: » January 9, 11:52AM
Current version
. - B 9 N\~ Background ® Jason Hoffman

%0
ad R i U i L e B B S B December 2023

relR e P r

» December 5, 2023, 2:54PM

® Jason Hoffman

November 2023

» November 21, 2023, 11:10AM

@ Jason Hoffman

» November 15, 2023, 3:22PM

® Jason Hoffman

» November 15, 2023, 2:36 PM

@ Jason Hoffman

» November 3, 2023, 4:13PM
Name current version ® Jason Hoffman

See version history 38+Option+Shift+H October 2023

» October 24, 2023, 11:42AM

> @ Jason Hoffman
» October 17, 2023, 12:19 PM

® Jason Hoffman

%p July 2023

July 24, 2023, 3:18PM

@ Jason Hoffman

» July 24, 2023, 2:43PM

@ Jason Hoffman

Version control

Working by yourself

& Reposnory
(database of
_ edits/versions) /

T

f Workmg copy

(make edits here)

Centralized version control (the old way)

e One central repository.
It stores a history of project versions.

e Each user has a working copy.

e A user commits file changes
to the repository.

e Committed changes are immediately
visible to teammates who update.

e Examples: SVN (Subversion), CVS.

Centralized version control

Server

Repository

Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control (the new way)

Distributed version control in git

Server

e Multiple copies of a repository. Each
stores its own history of project

. Repository
versions. .
906\0 Gl |2 D G{C/)
e FEach user commits to a local 7O HRE “s,
(private) repository. Repository Repository Repository
. . o~ ,8/ ~ & N &
e All committed changes remain local (gg/ js«' 55'/
G, (&7 (Y
unless pushed to another repository. Working Working Working
copy copy copy
e No external changes are visible
Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

unless fetched from another repository.

e Examples: Git, Hg (Mercurial).

Typical workflow

Local . Remote

(;Norktlng \ staging oca
: reclory area repo
git pull

git branch name

%}t checkout -b name
switch name

remote
repo

Repeat:
<edit files, run tests>
[git add]

it commit filename
1t commit

git pull

crun tests again” _ ‘
git push §

4h&&gnnmnm?

Sl I;__: .

<make a GitHub pull request>

An example git workflow

Distributed version control in git
e git clone (copy remote repo locally)
e Create branch: git branch name
e Switch to branch: git switch name
OR git checkout name 70
e Create & switch: git checkout -b

Repository

name o
T,
e Loop: gi/

e develop Working
. copy
o git add (stage changes)
o git commit (local commit) Workstation/PC #1
o git pull (merge changes in

remote with local)
o resolve conflicts
e git push (copy local changes to
remote repository)
e Make GitHub pull request

13

Other useful git commands

git diff. what changes are in the working copy?

git diff --staged: what changes are in the staging area?

git status: what files are in the working copy & staging area?
git log [--graph]: see the history of commits

git {annotate,blame,praise}. who last changed each line?
git cherry-pick: apply identified commits to current branch
git bisect: run binary search to find a bad commit

2 different version control modes

Centralized version control

Server
Repository
* =115 Y,
&7 El IR aoni
ST | |3 My

W 8 4] 74
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Distributed version control in git

Server
Repository
Vs
o2 gE TN
=0 al |5 “,

Repository Repository Repository
gy 99 99
Working Working Working
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

A little quiz

L3 When poll is active, respond at PollEv.com/renejust859 CJ When poll is active, respond at PollEv.com/renejust859

w Which of the following statements are true? ich of the following is NOT a git command?

git clone
Git requires a repository server
git fork

P git branch
A merge conflict in Git arises as soon &

as two users change the same file : e
@ git cherry-pick

After editing a file, only some of the EREEs

edits may end up in a Git commit

git pull

Branch
VS
Clone

Vs
Fork

Multiple versions of your program

What if you have to support:
e Version 1.0.4 and version 2.0.0
e Windows and macOS

e Adding a feature

e Fixing a bug

Git has 3 ways to represent multiple histories:

e Branch: Start a parallel history of changes to the code in the
repository

e Clone: Make a copy of the repository to work on code changes

e Fork: Make a copy the repository that will not necessarily be
merged back with original (but can be through a pull request)

Branches

- A branch is a history of program versions

- There is one main development branch (main, master, trunk)
o It should always pass tests and be ready to ship or deploy

a commit represents HEAD is the most
one state of the project recent commit

main

branch U/

Branches

« Other branches are alternate histories

- You can create many branches
o Lightweight - every work item (feature, bug fix) has its own branch
m Use of many branches prevents cross-pollution

- Branches (histories) can get out of sync

main
branch

feature O O

branch

Merging branches

- Branches can get out of sync
« Merge incorporates changes from one branch into another
- From a feature branch, run: git merge main

« Life goal of a branch is to be merged into main and deleted as
quickly as possible
o Done via a pull request, not via git merge

a merge commit has
more than one parent

main
branch

feature O O

branch

3 ways to resolve a pull request

main N\
branch

feature

branch
main

branch

feature
branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merege
feature &

branch

main
branch

feature
branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merege
feature &

branch

main
branch

feature rebase

branch

main
branch

feature
branch

3 ways to resolve a pull request

main
branch

()

merge

feature
branch
main
branch
feature rebase
branch O
main
branch
squash
feature & merge

branch

3 ways to resolve a pull request

main ()
branch ‘
merge
feature &
branch
main

branch

feature O Dase
branch
5ame
o project
branch ‘ ‘ ‘ ‘ ‘ ‘ state
squash

feature
branch ‘ ‘ & merge

3 ways to resolve a pull request

main

)
branch "
mer
feature ‘ erge
branch
main
branch
feature Dase
branch
. prOJect
main
o —O—0O0—O—~C Q)/ state
squash

o \O—C C & merge

3 ways to resolve a pull request

main

I
branch '
feature merge
branch Why
both?
main
branch
feature Dase
branch
. prOJect
main
" O O—O—C 0
squash

o \O—C C & merge

3 ways to resolve a pull request

-—
main ()
branch
mer
feature erge
branch
same diff -— -
main
S (0.,0.90.0
feature O Dase
branch
S5ame
. e project
main
o —O—0O0—O—C0O——~C () state
squash

feature
branch ‘ ‘ & merge

3 ways to resolve a pull request

main
branch

feature
branch

main M\
branch Oi O O o\ 9,0,0,0

What are the pros —O—Q \ O Dase

and cons of each? dame
. e project
Main
bralnch ‘ ‘ ‘ ‘ ‘ ‘ state
squash

feature
branch ‘ ‘ & merge

3 ways to resolve a pull request

main
branch

()

feature
branch

main () () (>)
branch /

Create a merge commit

All commits from this branch will be added t«

5ame
project
state

Squash and merge

A commits from this branch be r\
mb 1to one co the base branch. u

squash
& merge

Merge conflicts

Parallel edits

You and a teammate edit at the same time.

Merging is integrating your changes, keeping all edits.

The VCS tries to merge the edits for you.

If the VCS fails, there is a conflict.

You must resolve the conflict manually.

There are three versions of the code:

their
changes

ancestor F(:::::

my
changes

Conflicts

e \When you run git merge, git attempts to retain all the changes
from each branch

e A conflict arises when two users change the same line of a file
or adjacent lines

master

Merge conflict!

alice/master

e The person doing the merge needs to resolve the conflict by
manual editing

git's merge tools
Conflicts can make mistakes

e When you run git merge(git attempts jo retain all the changes

from each branch

e A conflict arises when two users change the same line of a file
or adjacent lines

master

Merge conflict!

alice/master

e The person doing the merge needs to resolve the conflict by
manual editing

Merge algorithm failure: unable to merge

1 def main():

e Line-by-line merge D s
yields a conflict X ntalcode X
° Inspection reveals : def um aln() = 128 : o r:n a:i n6(4) |
they can be merged - print(n_people) ; print (n)
Change 1 R\ K Change 2

Works despite
changes on P Git's output:

S UIite “merge conflict”

Merge algorithm failure: clean, incorrect merge

e Line-by-line merge
yields no conflicts
(“clean merge”)

e Resulting code is
iIncorrect

Function name changed

def mult(a,b):

Function name not changed

Darcs can record word substitution
(for code refactoring)

1
2 return axb
5 def main():
4 a=3
5 print(a)
X Initial code \
1 def multiply(a,b): i1 def mult(a,b):
2 return axb 2 return axb
3 def main(): 5 def main():
4 a=3 4 a = mult(3,5)
5 print(a) 5 print(a)
Change 1 a x Change 2
P 1 def multiply(a,b):
2 return axb
5 def main():
P a = mult(3,5)
5 print(a)

Merged (incorrectly)

feature ; f i : \‘ rebase
branch

Rebasing
(= rewriting the commit history)

feature Dase
branch

same
project
state

Rebasing
(= rewriting the commit history)

feature rebase

branch

Rebasing
(= rewriting the commit history)

Don't.

Any questions? WORLD OF PAIN

More seriously: why not?

How to avoid merge conflicts

Synchronize with teammates often

® Pull often

O Avoid getting behind the main branch

® Push as often as practical
O Don’t destabilize the main branch (don’t break the build)
O Use continuous integration
B automatic testing on each PR and push, even for branches

O Avoid long-lived branches (make frequent, small pull requests)

Commit often

® On the main branch (or any long-lived branch):

1. Every commit should address one concept (see next
slide); commits created only via pull requests

2. Every concept should be in one commit

3. Tests should always pass

® On feature/bugfix branches:

1. Each merged branch should address one concern
2. Don’t worry about the commit history
3. Get changes into main via a PR; squash and merge it

Make single-concern branches and commits

They are easier to understand, review, merge, revert.
Ways to achieve single-concern branches and commits:

® Do only one task at a time

O Commit after each one

® (Create a branch for each simultaneous task

O Easier to share work with teammates | CEEDE
working copy
O Single-concern branch = Single-concern commit on main per branch.

O Requires a bit of bookkeeping to keep track of them all (but worth it)
O Potential for merge conflicts
® Do multiple tasks in one branch =2

O Commit only specific files, or only specific parts of files

B use Git’s “staging area” with git add; can interactively choose parts of files

Do not commit all files

Use a .gitignore file

Don’t commit:

e Binary files

e Logfiles

e Generated files

e Temporary files

Committing would waste space and lead to merge conflicts

Plan ahead to avoid merge conflicts

® Modularize your work
O Divide work so that individuals or subteams “own” parts of the code
O Other team members only need to understand its specification

O Requires good documentation

® Communicate about changes that may conflict

o Examples (rare!): reformat whole codebase, move directories, rename
fundamental data structures

Cloning

- git clone creates a local copy of the repo and a working
copy of the files for editing

- Ideal for contributing to a repo alongside other
developers

e git push sends (GitHub(remote)
local changes to
remote repo

Server
Repository Clone
B £l Ny (copy on local host)
9“\\ a = D(/s
Repository Repository Repository
Working Working Working \J/
copy copy copy

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Fo rking (GitHub concept, not a git concept)

- Creates a new, unrelated repository (GitHub project) that
is initially an exact copy (including SHAS)

- Changes to either repository do not affect the other

- You can evolve the fork without impacting the upstream

- If original repo is deleted, forked repo will still exist

GitHub Fork
(full independent copy)

Lo T LRI\

- |t’s possible to update the original but only with pull
requests (original owner approves or not)

Choose between branch, clone, or fork

Scenario: CSE403 Class Materials GitHub Repo

1. Fix bugs in assignment 1

2. Work on my laptop

3. CSE413 will build upon CSE403
4. Anew quarter of CSE 403

What is this Git command?

NAME
git- - file contents to the index
SYNOPSIS
git [--dry-run | -n] [--force | -f] [--interactive | -1i] [--patch | -p]
DESCRIPTION
This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically s the
current content of existing paths as a whole, but with some options it can also
be used to content with only part of the changes made to the working tree

files applied, or remove paths that do not exist in the working tree anymore.

What is this Git command?

NAME

git-add - Adds file contents to the index
SYNOPSIS

git add [--dry-run | -n] [--force | -f] [--interactive | -i] [--patch |
DESCRIPTION

This command updates the index using the current content found in the working
tree, to prepare the content staged for the next commit. It typically adds the
current content of existing paths as a whole, but with some options it can also
be used to add content with only part of the changes made to the working tree
files applied, or remove paths that do not exist in the working tree anymore.

-P]

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [xcommon diff options>] <tree-ish> [<path>...]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding

tracked files in the working tree, or with the corresponding paths in the index.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [xcommon diff options>] <tree-ish> [<path>...]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS

git-allocate-remote [--derive-head | --massage-link-head | --abduct-commit |

DESCRIPTION
git-allocate-remote allocates various non-branched local remotes outside added logs, and the upstream to
be packed can be supplied in several ways.

SYNOPSIS

git-resign-index [--snap-file | [--direct-change |

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git: concepts and terminology

SYNOPSIS
git-diff-index [-m] [--cached] [xcommon diff options>] <tree-ish> [<path>...]

DESCRIPTION
git-diff-index compares the content and mode of the blobs found in a tree object with the corresponding
tracked files in the working tree, or with the corresponding paths in the index.

SYNOPSIS

git-allocate-remote [--derive-head | --massage-link-negasm-abaduct-commit |

DESCRIPTION
git-allocate-remote allocate

be packed can be

es outside added logs, and the upstream to

SYNOPSIS

git-resign-index [

DESCRIPTION
git-resign-index resigns all non-stashed unstaged indices, and the --manipulate-submodule flag can be
used to add a branch for the upstream that is counted by a temporary submodule.

Git’s confusing vocabulary

content: git tracks what is in a file, not the file itself

tree: git's representation of a file system

working tree: tree representing the local working copy
commit: a snapshot of the working tree (a database entry)
SHA: a unique identifier for a commit

ref. pointer to a commit object

branch: just a (special) ref; represents a line of development
HEAD: a ref pointing to the working tree

staged: ready to be committed (you ran git add)

index: staging area (located in .git/index)

Ask me anything

vz [M SOMETHING llF AGIT] EXPERT MYSELF

Learn more!

e Other resources: explanations, tips, best practices
o GitHub qgit cheat sheet

Michael Ernst: VC Concepts and Pull Requests

Atlassian merge vs rebase (but don’t rebase)

Git branching and merging

Video tutorial “Git, GitHub, & GitHub Desktop”

Learn Git Branching

O O O O O

https://training.github.com/downloads/github-git-cheat-sheet/
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/github-pull-request.html
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.youtube.com/watch?v=8Dd7KRpKeaE
https://learngitbranching.js.org/

