
Software Development
Lifecycles
UW CSE 403 Software Engineering

Today’s Outline

• Software development lifecycles (SDLC)
• What they are
• Why are they needed
• Recurring themes
• Popular models and their tradeoffs

• Traditional
• Agile

2

Software Engineering is …

3

“An engineering discipline concerned with all aspects of software production from the
early stages of system specification [requirements] through to maintaining [evolving] the

system after it has gone into use.” — Ian Sommerville

Software Engineering tasks include:
• Requirements engineering
• Specification writing and documentation
• Architecture and design
• Programming
• Testing and debugging
• Deploying, operating, evaluating, refactoring and evolving
• Planning, teamwork and communication

The software development challenge

4

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

Problem
specification

???

Solution (product,
including code)

One solution: Code and fix

5

Specification
(maybe)

Deliver
(maybe)

SDLC: Code and fix

6

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly

• Applicable sometimes for small projects, short-lived prototypes, and/or small
teams

Cons:
• <Over to you>

SDLC: Code and fix

7

Pros:
• Little or no overhead - just dive in and develop, and see progress quickly

• Applicable sometimes for small projects, short-lived prototypes, and/or small
teams

Cons:
• No way to assess progress, quality or risks

• Challenging to manage multiple developers – how synchronize your work

• Harder to accommodate changes without a major design overhaul

• Unclear delivery of features (scope), timing, and support

Code and fix productivity over time
Project with little attention on SDLC process

The Power of Process | Steve McConnell

Thrashing: doing
work but not
making progress
towards the goal

https://stevemcconnell.com/articles/the-power-of-process/

Project with early attention to SDLC process

The Power of Process | Steve McConnell

SDLC process: productivity over time

https://stevemcconnell.com/articles/the-power-of-process/

Is a more structured SDLC necessary?

It establishes an order – provides a model - of software project
events.

• It forces us to think of the “big picture” and follow steps so that we
reach it without glaring deficiencies.

• Without it we may make decisions that are individually on target
but collectively misdirected.

• It allows us to organize and coordinate our work as a team.

• It allows us to track progress and risks, and adjust as necessary.

10

Recurring themes in SDLCs

A SDLC defines how to produce software through a series of stages.

11

Goals of each stage

• Define a clear set of actions to
perform

• Produce tangible (trackable) items
• Allow for work revision
• Plan actions to perform in the next

stage

Common stages

• Requirements
• Architecture
• Design
• Implementation
• Testing/Verification
• Delivery/Release
• Maintenance

Key question: how to combine the stages and in what order

Today’s Outline

• Software development lifecycles (SDLC)
• What they are
• Why are they needed
• Recurring themes
• Popular models and their tradeoffs

• Waterfall model
• Prototyping
• Spiral model
• Staged delivery
• Agile (XP, Scrum)

12

All have the same goal – deliver
high quality software, on time,
meeting the customer’s needs

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

13

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

14

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Conceptually very
clean, but what’s

missing?

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

• Backsteps to correct
mistakes

15

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Conceptually very
clean, but what’s

missing?

SDLC: Waterfall model

• Top-down approach

• Sequential, non-overlapping
activities and steps

• Each step is signed off
on and then frozen

• Most steps result in a
final document

16

Requirements

Architecture/Design

Implementation

Verification

Maintenance

In what context
would it work

well?

17

Their SDLC is waterfall-like due
to the upfront and regulated
requirements

Waterfall: pros and cons

Pros:
• Simple to understand
• Promotes common dialogue
• Highly regulated deliverables

Cons:
• Hard to do all the planning upfront
• Inflexible – changes are expensive
• Test and integration come late –

fixes are expensive
• Final product may not match the

customer’s needs

18

Requirements

Architecture/Design

Implementation

Verification

Maintenance

Waterfall: pros and cons

Pros:
• Simple to understand
• Promotes common dialogue
• Highly regulated deliverables

Cons:
• Hard to do all the planning upfront
• Inflexible – changes are expensive
• Test and integration come late –

fixes are expensive
• Final product may not match the

customer’s needs

19

Requirements

Architecture/Design

Implementation

Verification

Maintenance

SDLC: Prototyping

20

• Problem domain or requirements
not well defined or understood

• Create small implementations of
requirements that are least understood

• Requirements are “explored” before the
product is fully developed

• Developers (and customers) gain experience
when developing the product

• Prototype can evolve to the real product or can
serve to be a learning tool only

Prototype

ReviewRefine

SDLC: Prototyping

21

• Problem domain or requirements
not well defined or understood

• Create small implementations of
requirements that are least understood

• Requirements are “explored” before the
product is fully developed

• Developers (and customers) gain experience
when developing the product

• Prototype can evolve to the real product or can
serve to be a learning tool only

Prototype

ReviewRefine

In what context
would it work

well?

https://internetdevels.com/blog/what-is-website-prototype-how-build-
website-prototype

https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-desktop

UI prototyping
is popular

https://internetdevels.com/blog/what-is-website-prototype-how-build-website-prototype
https://internetdevels.com/blog/what-is-website-prototype-how-build-website-prototype
https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-desktop

Prototyping: pros and cons

23

Pros:
• Client involvement and early feedback
• Improves requirements and specifications
• Reduces risk of developing the “wrong” product

Cons:
• Time/cost for developing may be high
• Hard to commit what will be delivered and when
• May end up evolving a poor choice (limit thinking

holistically)

Prototype

ReviewRefine

Prototyping: pros and cons

24

Pros:
• Client involvement and early feedback
• Improves requirements and specifications
• Reduces risk of developing the “wrong” product

Cons:
• Time/cost for developing may be high
• Hard to commit what will be delivered and when
• May end up evolving a poor choice (limit thinking

holistically)

Prototype

ReviewRefine

SDLC: Spiral Model

• Incremental/iterative model

• Iterations called spirals

• Repeat these activities:

• Determine objectives (reqs)

• Risk analysis

• Develop and test

• Plan

• Phased reduction of risks

(address high risks early)

 Boehm, Spiral Development: Experience, Principles,and Refinements

http://www.sei.cmu.edu/reports/00sr008.pdf

SDLC: Spiral Model

• Interesting to us as it’s a precursor to

agile models

• Software development is based on

iteration, using “risk reduction” as the
criterion to prioritize activities at each
iteration

Staged Delivery: one of many variants 🤯
• Waterfall-like planning

upfront then spiral/agile-like
short release cycles

27

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 2: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

McConnell: https://stevemcconnell.com/

https://stevemcconnell.com/

Staged Delivery: pros and cons

• Pros:

• Cons:

28

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 2: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

Staged Delivery: pros and cons

• Pros:
• Can ship at the end of any

release cycle
• Intermediate deliveries show

progress, satisfy customers, and
lead to feedback

• Problems are visible early

• Cons:
• Requires tight coordination
• Product must be decomposable
• Extra releases cause overhead

29

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

Stage 2: Detailed design,
code, debug, test, delivery

Stage <n>: Detailed design,
code, debug, test, delivery

Today’s Outline

• Software development lifecycles (SDLC)
• What they are
• Why they are needed
• Recurring themes
• Popular models and their tradeoffs

• Waterfall model
• Prototyping
• Spiral model
• Staged delivery
• Agile (XP, Scrum)

30

Traditional models

Agile models

What is Agile all about?

Premise: the world is uncertain, and we must be flexible and
responsive to changes

31

There is nothing permanent except change. -Heraclitus
(Greek philosopher)

It is not the strongest or the most intelligent who will
survive but those who can best manage change. -Charles

Darwin (English naturalist)

Agile Manifesto

Agile Manifesto (http://agilemanifesto.org/):

● Individuals and interactions over processes and tools

● Working software over comprehensive documentation

● Customer collaboration over contract negotiation

● Responding to change over following a plan

While there is value in the items on the right,
we value the items on the left more.

32

http://agilemanifesto.org/

The Agile Manifesto (12 points)

Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive
advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant
pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.
33

Agile models

34

“Agile software development” is a general term for frameworks and
practices outlined in the Agile Manifesto

Agile models
• Aim to deliver a high-quality product to the customer as fast as possible

• Focus on simplicity, continuous testing, integration

• Incremental and frequent delivery of working software

• Continuous customer involvement

• Expect requirements to change
http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

Agile SDLC: Extreme Programming (XP)

35

https://www.nimblework.com/agile/extreme-programming-xp/

• XP emphasizes how engineers
should work – good practices
taken to an extreme

• Examples:
• Continuous testing and

integration
• 10-minute build
• Constant discussions with

customers
• Full flexibility to change

requirements anytime
• Pair programming
• Test-driven development

https://www.nimblework.com/agile/extreme-programming-xp/

Extreme Programming (XP): 12 practices

Fine-scale feedback
• Pair programming
• Planning game
• Test-driven development
• Whole team

Continuous process
• Continuous integration
• Refactoring or design improvement
• Small releases

Shared understanding
• Coding standards
• Collective code ownership
• Simple design
• System metaphor

Programmer welfare
• Sustainable pace

36

XP Practice: Pair Programming

37

Pair programming – All production
software is developed by two people
sitting at the same machine.
Pairs and roles (driver/navigator) are
frequently changed.

Provides for continuous code
development, collaboration, and review.

Thoughts?

XP Practice: Test-driven development

38

Start with requirements
Write tests before code
Develop code to make the tests pass

Tests run early and often

Thoughts?

Write
test

Write
code to

pass test

Refactor
code

Agile SDLC: Scrum

39

• Many analogies with
XP

• Scrum focuses on
management and
productivity

• XP addresses
software quality and
engineering
techniques

Shall we try a daily standup?

40

Daily Standup
Answer 3 questions

1. What did I accomplish
yesterday?

2. What am I planning for
today?

3. Am I blocked on
anything?

Set of 403
project pitches

Report progress

Set of
403 projects

403 pitch
presentations

Agile Summary

41

Pros

• Flexibility (changes are expected)

• Focus on quality (continuous testing)

• Focus on communication – with customers – with team

Cons

• Requires experienced management and skilled developers
(e.g., responsible, proactive, communicate well)

• Prioritizing requirements can be difficult when there are multiple stakeholders

• Needs customer to be flexible in delivery (what / when)

• Works best for small teams and small to medium-sized projects

What SDLC would you pick and why?

42

http://tinyurl.com/cse403-sdlc

• A control system for anti-lock braking in a car

• A hospital accounting system that replaces an existing one

• An interactive system that allows airline passengers to quickly find
replacement flights

• New innovative but tbd features for a social media app

• Your 403 class project

http://tinyurl.com/cse403-sdlc

What SDLC would you pick and why?

43

• A control system for anti-lock braking in a car

• A hospital accounting system that replaces an existing one

• An interactive system that allows airline passengers to quickly find
replacement flights

• New innovative but tbd features for a social media app

• Your 403 class project

Why are there so many SDLC models?!

44

Choices are good ☺!

• The choice depends on the project context and
requirements

• All models have the same goals: manage risks and produce
high quality software

• All models involve the same general activities and stages
(e.g., specification, design, implementation, and testing)
and can be tailored

• Recent models involve customer feedback and the ability
to adapt to changing requirements

Triangle - project management tool

45

• Software projects must balance
what’s delivered, when, and with
what resources

• When there are changes to one
axis, at least one other has to adapt

• These are also good considerations
when choosing a SDLC model or
adapting to a changing environment

Quality

Scope | Features

Time Resources

Elevator Pitch

46

An elevator pitch is a brief, persuasive speech that you use to spark interest
in a product, project or idea, or in yourself. An elevator pitch is short, about

the time you spend in an elevator, hence the name.

https://asana.com/resources/elevator-pitch-examples

You have 2
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

https://asana.com/resources/elevator-pitch-examples

Press Release

47

Write a mock product press release describing your product

Includes
Problem trying to solve

Value proposition
How differs from competitors

Release timing and teaser of future beyond release
Quotes from well known users showing their delight

Excellent way to paint the vision and get buyin

You have 2-3
minutes for your
project pitch to
the class - this is a
good example of
how it could flow

