Software Development

Lifecycles
UW CSE 403 Software Engineering

Today'’s Outline

* Software development lifecycles (SDLC)
* What they are
* Why are they needed
* Recurring themes

* Popular models and their tradeofts
* Traditional
* Agile

Software Engineering is ...

“An engineering discipline concerned with all aspects of software production from the
early stages of system specification [requirements] through to maintaining [evolving] the
system after it has gone into use.” — lan Sommerville

Software Engineering tasks include:
* Requirements engineering
* Specification writing and documentation
* Architecture and design
* Programming
* Testing and debugging
* Deploying, operating, evaluating, refactoring and evolving
* Planning, teamwork and communication

The software development challenge

Problem
specification

]

277

Solution (product,
including code)

One solution: Code and fix

Deliver

Specification
(maybe)

(maybe)

SDLC: Code and fix

Pros:

* Little or no overhead - just dive in and develop, and see progress quickly

* Applicable sometimes tor small projects, short-lived prototypes, and/or small
teams

Cons:
* <Over to you>

SDLC: Code and fix

Pros:

* Little or no overhead - just dive in and develop, and see progress quickly

* Applicable sometimes tor small projects, short-lived prototypes, and/or small
teams

Cons:

* No way to assess progress, quality or risks
* Challenging to manage multiple developers - how synchronize your work
* Harder to accommodate changes without a major design overhaul

* Unclear delivery of features (scope), timing, and support

Code and fix productivity over time

Project with little attention on SDLC process

100%
Thrashing
Percent Product Work —===20z090M™ e
OfEffort ro uc |Ve Or 0...
4
0%
Time

Thrashing: doing
work but not

making progress
towards the goal

The Power of Process | Steve McConnell

https://stevemcconnell.com/articles/the-power-of-process/

SDLC process: productivity over time

Project with early attention to SDLC process

1o Thrashing
Patceiil Productive Work
of Effort

-

‘
Process

0%
The Power of Process | Steve McConnell

Time

https://stevemcconnell.com/articles/the-power-of-process/

Is a more structured SDLC necessary?

It establishes an order — provides a model - of software project
events.

* It forces us to think of the “big picture” and follow steps so that we
reach it without glaring deficiencies.

* Without it we may make decisions that are individually on target
but collectively misdirected.

* It allows us to organize and coordinate our work as a team.

* It allows us to track progress and risks, and adjust as necessary.

10

Recurring themes in SDLCs

A SDLC defines how to produce software through a series of stages.

Common stages

Goals of each stage

Requirements
Architecture
Design
Implementation
Testing/Verification
Delivery/Release
Maintenance

Define a clear set of actions to
perform

Produce tangible (trackable) items
Allow for work revision

Plan actions to perform in the next
stage

Key question: how to combine the stages and in what order

11

Today’s Outline

* Software development lifecycles (SDLC)
* What they are
* Why are they needed
* Recurring themes
* Popular models and their tradeoffs
« Waterfall model
* Prototyping
* Spiral model

* Staged delivery
* Agile (XP, Scrum)

All have the same goal — deliver
— high quality software, on time,
meeting the customer’s needs

12

SDLC: Waterfall model

Requirements _l * Top-down approach

- Sequential, non-overlapping
Architecture/Design _l activities and steps

* Each step is signed off
Implementation _l on and then frozen

« Most steps result in a
Verification final document

Maintenance

13

SDLC: Waterfall model

Architecture/Design _l

Implementation _l

Verification

Requirements Conceptually very | < Top-down approach
1 clean, but what's | « Sequential, non-overlapping

missing? activities and steps

* Each step is signed off
on and then frozen

« Most steps result in a
final document

Maintenance

14

SDLC: Waterfall model

Requirements _l Conceptually very | < Top-down approach

clean, but what's | « Sequential, non-overlapping
Architecture/Design _l missing? activities and steps

 Each step is signed off
Implementation _l on and then frozen

« Most steps result in a
Verification final document

* Backsteps to correct
Maintenance mistakes

15

SDLC: Waterfall model

Requirements _l In what context » Top-down approach

would it work - Sequential, non-overlapping
Architecture/Design _l well? activities and steps

* Each step is signed off
Implementation _l on and then frozen

« Most steps result in a
Verification final document

Maintenance

16

Honeywell's Flight Management System Selected By Airbus

Honeywell's solution will address the avionics needs of the Airbus A320, A330 and A350 aircraft fleet

o2y U.S. FOOD & DRUG

ADMINISTRATION

+—Home / Medical Devices / Device Advice: Comprehensive Regulatory Assistance / Overview of Device Regulation

Overview of Device Regulation

/ fshare | W T in Linkedin | % Email | & Print

Overview of Device
Regulation

Introduction

Their SDLC is waterfall-like due
to the upfront and regulated
requirements

f FDA's Center for Devices and Radiological Health (CDRH) is responsible for
A History o ;

anufacture, repackage, relabel, and/or import medical
ted States. In addition, CDRH regulates radiation-
»ducts (medical and non-medical) such as lasers, x-ray

juipment, microwave ovens and color televisions.

1 ¥ 0 1 | - =¥

Cont

of:
09/0.

Regu
Prod
Medi
Radig
Prod

17

Waterfall: pros and cons

Requirements —1

Architecture/Design _l

Implementation

H

Verification _l

Maintenance

Pros:

Cons:

18

Waterfall: pros and cons

Requirements _l

Architecture/Design _l

Implementation _l
Verification _l

Maintenance

Pros:

« Simple to understand

« Promotes common dialogue
« Highly regulated deliverables

Cons:

« Hard to do all the planning upfront

* Inflexible - changes are expensive

« Test and integration come late -
fixes are expensive

* Final product may not match the
customer’s needs

19

SDLC: Prototyping

* Requirements are “explored” before the

* Problem domain or requirements
Prototype not well defined or understood
* Create small implementations of
requirements that are least understood
product is fully developed

Refine Rewew * Developers (and customers) gain experience
when developing the product

* Prototype can evolve to the real product or can
serve to be a learning tool only

20

SDLC: Prototyping

* Requirements are “explored” before the

* Problem domain or requirements
Prototype not well defined or understood
* Create small implementations of
requirements that are least understood
product is fully developed

Refine Rewew * Developers (and customers) gain experience
when developing the product

In what context * Prototype can evolve to the real product or can

. serve to be a learning tool onl
would it work 8 Y

well?

21

2 s

A e e
P ot et e e B

Ul prototypin
is popular

4

i

i

Y3
eg:é’\\

%

VALERAY

';v\v.;"%

i

A

Retail Analysis Sample PBIX - Power B Des... £ Search Sign in . = X

s e TR cusmsne File Home Insert Modeling View Help External Tools

couare XML

=
Shifeo D PR OED B E 8
& a B0 b B B 74 N
Get Excel Data SQL Enter Dataverse Recent Transform Refresh New Text More New Quick Sensitivity | Publish
datav workbook hubv Server data sourcesv datav visual box visualsv = measure measure
Clipboard Data Queries Insert Calculations Sensitivity Share o
Y Filters @ » Visualizations » Fields »

Build visual ————————
: Store Sales Overview R Search D/ M
‘. : : > I Sales
website-prototype . by LU

Filters on this page

- . Elﬂﬂgﬂlﬂglﬂﬂ > B District
ol N ain > B Item
F m 11—I Sikedn is (Al K @ m m Iim g > B Store
. PR City Mﬁlu@@@ > BB Time
is (Al) QW A»E[E

District E @ E R Py
' is Al S =R

. Name @ 2
O W sl

. T Values
P Open Month
. B is (All) Add data fields here

}/\ Ry S e s o . Store Type Drill through
ki _—
- is (All) Cross-report ®0ff)

Keep all filters m

Add drill-through fields here

104

Add data fields here
‘ Info Overview District Monthly Sales New Stores +

Page 2 of 4 -—f——+ 53% [

https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-deskto

https://internetdevels.com/blog/what-is-website-prototype-how-build-website-prototype
https://internetdevels.com/blog/what-is-website-prototype-how-build-website-prototype
https://learn.microsoft.com/en-us/power-bi/fundamentals/desktop-what-is-desktop

Prototyping: pros and cons

/Prototypel\ Pros:

Cons:

Refine ReV|ew

23

Prototyping: pros and cons

Prototype Pro;. :
* Client involvement and early feedback
* Improves requirements and specifications
* Reduces risk of developing the “wrong” product
Cons:
Refine Rewew * Time/cost for developing may be high

 Hard to commit what will be delivered and when

* May end up evolving a poor choice (limit thinking
holistically)

24

SDLC: Spiral Model

1.Determine
obj ectives

A Cumulative cost

/

£
P

Progress 2. ldentify and
e resolve risks

/—\,\ Operasonal
Prototype 1| Frotofpe puoqpe

4. Planthe
nextiteration

Concege of
operation

Develop ment

Release

3. Development
and Test

* Incremental/iterative model
* lterations called spirals
* Repeat these activities:
* Determine objectives (reqs)
* Risk analysis
* Develop and test
* Plan

* Phased reduction of risks
(address high risks early)

Boehm, Spiral Development: Experience, Principles,and Refinements

http://www.sei.cmu.edu/reports/00sr008.pdf

SDLC: Spiral Model

1.Determine
obj ectives

—_—

A Cumulative cost

Progress
S

2. ldentify and
resolve risks

4. Planthe
nextiteration

3. Development
and Test

Interesting to us as it's a precursor to
agile models

Software development is based on
iteration, using “risk reduction” as the
criterion to prioritize activities at each
iteration

Staged Delivery: one of many variants %3

’

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

'

Stage 2: Detailed design,
code, debug, test, delivery

T
¥

code, debug, test, delivery

Stage <n>: Detailed design,

* Waterfall-like planning
upfront then spiral/agile-like
short release cycles

McConnell: https://stevemcconnell.com/
27

https://stevemcconnell.com/

Staged Delivery: pros and cons

* Pros:

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery
] e Cons:

Stage 2: Detailed design,
code, debug, test, delivery

T
¥

Stage <n>: Detailed design,
code, debug, test, delivery

Staged Delivery: pros and cons

Requirements

Architecture/Design

Stage 1: Detailed design,
code, debug, test, delivery

'

Stage 2: Detailed design,
code, debug, test, delivery

T
¥

Stage <n>: Detailed design,
code, debug, test, delivery

* Pros:

* Can ship at the end of any
release cycle

* Intermediate deliveries show
progress, satisfy customers, and
lead to feedback

* Problems are visible early

* Cons:
* Requires tight coordination
* Product must be decomposable
* Extra releases cause overhead

29

Today’s Outline

* Software development lifecycles (SDLC)

* What they are

* Why they are needed

* Recurring themes

* Popular models and their tradeoffs
* Waterfall model =
* Prototyping
* Spiral model

* Staged delivery _
* Agile (XP, Scrum)

— Traditional models

30

Agile models

What is Agile all about?

Premise: the world is uncertain, and we must be flexible and
responsive to changes

There is nothing permanent except change. -Heraclitus

(Greek philosopher)

It is not the strongest or the most intelligent who will
survive but those who can best manage change. -Charles
Darwin (English naturalist)

31

€ g
3 @
2] THAT MEANS NO MORE |¢
TRY SOMETHING ¢| PLANNING AND NOMORE |5 1y iap THAT
CALLED AGILE £] DOCUMENTATION. JUST 2| 1o nc's WAS YOUR
PROGRAMMING 2| START WRITING CODE |5 NAME TRAINING.
° I ° f ‘ §] AND COMPLAINING. . : :
E |
Agile Maniftesto : | ’
Q - |
g ; \ H I %4 17
= g 3y < : %
3 (Sy— ; — : QE;'I

© Scott Adams, Inc./Dist. by UFS, Inc.

Agile Manifesto (http://agilemanifesto.org/):

e Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

While there is value in the items on the right,
we value the items on the left more.

32

http://agilemanifesto.org/

The Agile Manifesto (12 points)

Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive
advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant
pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.
Simplicity—the art of maximizing the amount of work not done—is essential.
The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

33

Agile models

“Agile software development” is a general term for frameworks and
practices outlined in the Agile Manitesto

Agile models
« Aim to deliver a high-quality product to the customer as fast as possible
 Focus on simplicity, continuous testing, integration
* Incremental and frequent delivery of working software
 Continuous customer involvement

« Expect requirements to change
http://agilemanifesto.org/principles.html

34

http://agilemanifesto.org/principles.html

Agile SDLC: Extreme Programming (XP)

« XP emphasizes how engineers
should work - good practices
taken to an extreme

Test Scenarios ©
e * Examples:
Requirements & Continuous testing and

] Release : :
= Integration

..Storles \00 % * 10-minute build

-1 Eﬁ'ﬁ?ﬁﬁg &,SS' S « Constant discussions with

xe> jes customers

Small releases o
* Full flexibility to change

Qy
requirements anytime

https://www.nimblework.com/agile/extreme-programming-xp/ * Pair programming
* Test-driven development

35

https://www.nimblework.com/agile/extreme-programming-xp/

Extreme Programming (XP): 12 practices

Fine-scale feedback

* Pair programming
 Planning game

« Test-driven development
* Whole team

Continuous process

* Continuous integration
» Refactoring or désign improvement
* Small releases

Shared understanding

* Coding standards .
* Collective code ownership
 Simple design

* System metaphor

Programmer welfare
 Sustainable pace

36

XP Practice: Pair Programming

Pair programming - All production
software is developed by two people
sitting at the same machine.

Pairs and roles (driver/navigator) are
frequently changed.

Provides for continuous code
development, collaboration, and review.

Thoughts?

37

XP Practice: Test-driven development

Start with requirements
Write tests before code
Develop code to make the tests pass

3 @

Tests run early and often

Write

Thoughts? Reclz‘;'éor ‘ code to
gnis! pass test

38

Agile SDLC: Scrum

Sprint
Retrospective . .
* Many analogies with
%
Planning

XP
Backlog Backlog

 Scrum focuses on
management and
productivity

Sprint
Review

« XP addresses
software quality and
engineering

i ———— techniques

Increment

39

Shall we try a daily standup?

Report progress
Sprint l
Retrospective
Sprint
% D

Daily Standup
Answer 3 questions

What did | accomplish

yesterday?
e What am | planning for
Review today?
Product Sprint Increment Am | blOCkEd on
Backlog Backlog .
T T anything?
Set of Set of 403 403 pitch

403 projects project pitches presentations

40

Agile Summary

Pros
* Flexibility (changes are expected)
* Focus on quality (continuous testing)

 Focus on communication - with customers - with team

Cons

* Requires experienced management and skilled developers
(e.g., responsible, proactive, communicate well)

* Prioritizing requirements can be difficult when there are multiple stakeholders
 Needs customer to be flexible in delivery (what / when)

* Works best for small teams and small to medium-sized projects

41

What SDLC would you pick and why?

http://tinyurl.com/cse403-sdlc

- A control system for anti-lock braking in a car
- A hospital accounting system that replaces an existing one

- An interactive system that allows airline passengers to quickly find
replacement flights

- New innovative but tbd features for a social media app
- Your 403 class project

42

http://tinyurl.com/cse403-sdlc

What SDLC would you pick and why?

- A control system for anti-lock braking in a car
- A hospital accounting system that replaces an existing one

- An interactive system that allows airline passengers to quickly find
replacement flights

- New innovative but tbd features for a social media app
- Your 403 class project

43

Why are there so many SDLC models?!

Choices are good &3!

* The choice depends on the project context and
requirements

* All models have the same goals: manage risks and produce
high quality software

* All models involve the same general activities and stages
(e.g., specification, design, implementation, and testing)
and can be tailored

* Recent models involve customer feedback and the ability
to adapt to changing requirements

44

Triangle - project management tool

/ Scope | Features \ Software projects must balance

what's delivered, when, and with
what resources

* When there are changes to one
axis, at least one other has to adapt

* These are also good considerations
when choosing a SDLC model or
adapting to a changing environment

Qme Resourcﬂ

45

Elevator Pitch

An elevator pitch is a brief, persuasive speech that you use to spark interest
in a product, project or idea, or in yourself. An elevator pitch is short, about
the time you spend in an elevator, hence the name.

A foolproof elevator pitch template

You have 2
minutes for your

& project pitch to
@ the class - thisis a
’ good example of

how it could flow
Introduce Present Present Share your value Add a call

yourself the problem your solution proposition to action

https://asana.com/resources/elevator-pitch-examples
46

https://asana.com/resources/elevator-pitch-examples

Press Release

Write a mock product press release describing your product

Includes
Problem trying to solve
Value proposition
How differs from competitors
Release timing and teaser of future beyond release
Quotes from well known users showing their delight

Excellent way to paint the vision and get buyin

47

