The Joel Test

CSE 403 Software Engineering

http://www.joelonsoftware.com/articles/fog0000000043.html



Who is Joel Spolsky?

Wikipedia:

Avram Joel Spolsky (born 1965) is a software
engineer and writer. He is the author of Joel on
Software, a blog on software development, and the
creator of the project management software Trello.?
He was a Program Manager on the Microsoft Excel
team between 1991 and 1994. He later founded Fog
Creek Software in 2000 and launched the Joel on
Software blog. In 2008, he launched the Stack
Overflow programmer Q&A site in collaboration with
Jeff Atwood. Using the Stack Exchange software
product which powers Stack Overflow, the Stack
Exchange Network now hosts over 170 Q&A sites.

By Katie Chan - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=33466664


https://en.wikipedia.org/wiki/Trello
https://en.wikipedia.org/wiki/Joel_Spolsky#cite_note-tri-2
https://en.wikipedia.org/wiki/Microsoft_Excel
https://en.wikipedia.org/wiki/Fog_Creek_Software
https://en.wikipedia.org/wiki/Fog_Creek_Software
https://en.wikipedia.org/wiki/Stack_Overflow
https://en.wikipedia.org/wiki/Stack_Overflow
https://en.wikipedia.org/wiki/Jeff_Atwood
https://en.wikipedia.org/wiki/Stack_Exchange
https://en.wikipedia.org/wiki/Stack_Exchange

What is the Joel Test?

The Joel Test is:
* A checklist of 12 best practices good software teams do

* Ablog post 25 (!) years ago
* https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
* https://dev.to/checkgit/the-joel-test-20-years-later-1kjk

* By Joel Spolsky (founder of Stack Overflow and Trello)

* These factors indicate a disciplined team that can consistently deliver

Score out of 12: Is the test still
*12 is good

*11is OK
*10 or fewer is bad

relevant today?



https://dev.to/checkgit/the-joel-test-20-years-later-1kjk
https://dev.to/checkgit/the-joel-test-20-years-later-1kjk

Today's Outline

1. Overview the 12 best practices
2. Discuss practices of some realistic software teams

3. Which team/company has the best chance of success?



The Joel Test

1. Do you use source control?



The Joel Test

1. Do you use source control?
2. Canyou make a build [+ release] in one step?



The Joel Test

1. Do you use source control?
2. Canyou make a build [+ release] in one step?
3. Do you make daily builds?



The Joel Test

1. Do you use source control?
2. Canyou make a build [+ release] in one step?

3. Do you make-datty-btitds use Cl (Continuous Integration)?



The Joel Test

Do you use source control?
Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?

Do you have a bug database?

PwnN e



The Joel Test

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

ik wn e

10



The Joel Test

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

ok wh ek

11



The Joel Test

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

NoOoUsEWNE

12



The Joel Test

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

Do programmers have quiet working conditions?

0 NOUEWDNE

13



The Joel Test

0 00 NOUTEWNE

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

Do programmers have quiet working conditions?

Do you use the best tools money can buy?

14



The Joel Test

O o0 NOUTEWNE

=
o

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

Do programmers have quiet working conditions?

Do you use the best tools money can buy?

Do you have testers?

15



The Joel Test

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?

Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

Do programmers have quiet working conditions?

Do you use the best tools money can buy?

Do you have testers- automated testing and monitor coverage?

O o0 NOUTEWNE

=
o

16



The Joel Test

1. Do you use source control?

2. Canyou make a build [+ release] in one step?

3. Do you make-daty-btitds use Cl (Continuous Integration)?

4. Do you have a bug database?

5. Do you fix bugs before writing new code?

6. Do you have an up-to-date schedule?

7. Do you have a spec?

8. Do programmers have quiet working conditions?

9. Do you use the best tools money can buy?
10. Do you have testers- automated testing and monitor coverage?
11. Do new candidates write code during their interview?

17



The Joel Test

Do you use source control?

Can you make a build [+ release] in one step?

Do you make-gatybutds use Cl (Continuous Integration)?
Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

Do programmers have quiet working conditions?

Do you use the best tools money can buy?

Do you have testers- automated testing and monitor coverage?
Do new candidates write code during their interview?

Do you do hallway usability testing?

O 00Nk WNE

=
N = O

18



Do you use source control?

What are the benefits?

19



Do you use source control?

What are the benefits?

Allows multiple developers

Keep project in consistent state
Track changes and enable roll-back
Manage multiple versions

Save data in case of a disaster
Authoritative source for “daily build”



Do you use source control?

What are the benefits?

Allows multiple developers

Keep project in consistent state
Track changes and enable roll-back
Manage multiple versions

Save data in case of a disaster
Authoritative source for “daily build”

ave you USecC
ave you USeC
ave you USecC

ave you USecC

git?

git with other developers?
branches?

pull requests?

21



Do you have a one-step build?

A single script that

* [does a full checkout from scratch]

* rebuilds every line of code

* makes the binary executable files in all versions, languages,
OSes, and #ifdet combinations

* [runs the tests]

* [creates the installation package]

* [creates the final media - installer, zip file, web site, ...]

All steps are automated and exercised regularly

22



Do you do a daily build and test?

Build the entire product every day and run a good test suite against
the new version

e Build from checked-in sources
* Automatic and frequent

Goal: discover problems early, and fix them before disaster strikes

Benefits

* Minimizes integration risk

* Reduces risk o%low quality

» Supports easier defect diagnosis

* Improves morale - developers, managers, customers 23



Do you use a bug database?

You can't keep the bug list in your head

 Especially with multiple developers and multiple customers
* Moreover, looking at the history of bugs can be insightful!

To characterize a bug, consider:

* how to reproduce it .
» expected behavior, actual behavior
* responsible party, status, priority

Besg to use what is integrated with your code hosting (GitHub, Bitbucket,
etc.

Alternatives: JIRA, YouTrack, Bugzilla, text file (2))

24



Do you fix bugs before writing new code?

Why not fix them later?

25



Do you fix bugs before writing new code?

Why not fix them later?

e Familiar with the code now

e Harder to find (and fix) later

e Later code may depend on this code (try building on
quicksand...)

e Bugs may reveal fundamental problems

e Leaving all bugs to the end will make it harder to understand and
keep the schedule

“Technical debt” is incurred by doing something quick but
unprincipled

26



Do you have an up-to-date schedule?

Keeps expectations realistic
e Forthe team, customers, stakeholders

Allows for more accurate predictions
e Use experience to improve estimates

Helps prevent feature creep
e Don't take on anything without checking the schedule first

27



Do you have a spec?

Easier to fix problems at the desi%)n stage
You know what you are trying to build

So do your teammates and customer
More likely that you build the right thing
Pieces fit together

Customer is satisfied

Conceptual integrity for your project
The manual has similar benefits & is part of the spec
Undocumented code has no commercial value

Joel's example: Netscape Navigator
Other examples: Viaweb (Paul Graham, Robert Morris), Vanu

28



Do you do hallway usability testing?

Grab someone in the hallway and make them use your code

Key idea: get feedback fast
A little feedback now > lots of feedback later
You will get most of the valuable feedback from the first few users

29



Joel's disclaimer

e These are not the only factors that determine success or failure
o A great team will not help if you are building a product no one wants
o Anincredibly talented team might produce an incredible product
without these guidelines

e But all things being equal, these factors indicate a disciplined team
that can consistently deliver

30



The Joel Test - how does 403 stack up?

S S T
N = O

O o0 NOUTEWNE

?

—_—

9
?

Do you use source control?

"4l Can you make a build [+ release] in one step?

Do you make-gatybuids use Cl (Continuous Integration)?

Do you have a bug database?
Do you fix bugs before writing new code?

£ Do you have an up-to-date schedule?
| Do you have a spec?

Do programmers have quiet working conditions?
Do you use the best tools money can buy?

\"4 Do you have testers- automated testing and monitor coverage?

?
?

Do new candidates write code during their interview?
Do you do hallway usability testing?

31



Keep the end goal in mind

t is fun to produce a successful product

Processes make success more likely,
especially with larger projects.

t is not always fun to conform to processes.

32



More advice: automation

* Automated testing

e Automate everything (e.g., formatting)
Nothing that requires human interaction is acceptable

e Use automated tools: linting, verification

33



Other advice

i

Peopleware:: " |

Productive Projectsg

e
.

and Teams %

&
Timothy Lister

34



Other advice

. 2N
PaN
bH

.

Peoplewar ).

.y <
Productive Projects ylscis

and Teams %

&
Timothy Lister

LT 7 N
e,

THE
NoO ASSHOLE

RULE

Building a Civilized Workplace
and Surviving One That Isn't

H@71*4
delete

ROBERT I. SUTTON, PHD

35



Let's try out the test

8 teams/companies
Hypothetical but plausible - largely based on experience

Only some Joel Test questions are highlighted - assume others are
covered adequately

Assess the scenarios as we go
* How successful will they be in their scenario with their practices?
* How much would you like to work in such an environment?

36



The Startup Incubator team

You work for an early-stage tech startup in an incubator.
Things move fast around here.

(2.) One-step builds: Your team uses GitHub's continuous
integration tools.

(8.) Loud conditions: You work in an incubator - so you share
your cubicle with three other people, and you share your open
floor with other companies. It can get pretty loud on a regular
basis.

(9.) On a shoestring budget: Everyone works on their own
laptop, partially from home (different OSes, etc), and you
mainly avoid paid software — compatibility issues and some
wasted time result.

(12.) Hallway usability testing: As a team you're constantly
pinging ideas back and forth and demoing new features. As a
result your Ul is great, and you tend to only build useful
features.

abswn =

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you use CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet
working conditions?
Do you use the best tools money
can buy?
Do you use automated testing?
Do new candidates write code
during their interview?
Do you do hallway usability testing?

37




The Not-For-Profit Company team

Your team works for a mission-driven not-for-profit. You care
a lot about the company, really get along with your
co-worker, but some of the engineering practices are ...
questionable.

(1.) No source “control”: Although you have your code in
BitBucket, there is not a good process/effort to integrate
upgrades from collaborators.

(5.) Lower bug priority: The company has little resources to
keep up with new requirements. Bugs are only tackled only
when somethings breaks really bad.

(8.) Quiet work conditions: you don’t have offices, but your
working spaces are fairly quiet, not like the cacophony of an
incubator.

(12.) Hallway testing: you also do a good deal of hallway
usability testing.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

38




The Big Tech Company team

You work on a team at one of the big tech companies.

(1.) Source control: not only do you use source control,
your company has its own suite of internal tools for code
reviews, etc., increasing productivity a lot.

(2.) No one-step build: you cannot make the build in one
step - in fact you have a “build manager” rotation which
consumes an engineer’s whole week.

(8.) Open floor plan: you have your own desk, thankfully,
but it's on a floor with a few dozen desks and it's often a
little busy.

(11.) Coding in interviews: coding is the biggest part of
your company’s notoriously difficult interview process. As
a result, not only can you rely on your coworkers to be
technically solid, you frequently learn from them.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

39




The Investment Firm team

You work for a big bank or investment firm. Your team
does in-house modeling and tooling for its investors.

(7.) No spec: leadership is pretty unclear on what they
want you to do, and the software engineers hate writing
documentation, so you frustratingly spend more time than
you'd like working on projects that are ultimately
dropped, or dealing with requirement churn

(8). Quiet work space: everyone has an office. In fact,
maybe you have too much time away from your team.

(9.) Best tools money can buy: you have your own office
and nice hardware. Cost is not a barrier to access any
software or computing resources.

(10.) Do you have testers: Yes, but they are mostly focused
on higher level issues, like the results of analysis. Tests
aren’t automated.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

40




The Enterprise Company team

You work for a big enterprise software company. You have
quarterly scheduled build releases, follow the Waterfall method,
all that.

(3.) No daily builds: Every couple of weeks your team gets
blocked on the build being broken by some bug a dozen commits
ago. You can imagine a lot of time is lost at the whole company
this way...

(6.) Up-to-date schedule: thanks to the company’s structured
releases, your team always knows what to have done, when.
Other teams can count on yours to always hit your deadlines.

(7.) There are specs: Your team is careful to write specs.

(9.) Best tools available: Not really. Because of the companies'’
partnerships, you have to stick with the provided tools and it is
really hard to try new ones.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

41




The Trendy Startup team

You work for a trendy startup working on
something to do with deep learning, blockchain, or
guantum computing.

(2.) One-click builds and (3.) at-least daily builds:
both use standard continuous integration, resulting
in little to no time wasted on fixing broken builds.

(5.) Your team doesn't prioritize fixing bugs and
regularly (6.) doesn’t stick to a set schedule. You're
frequently meeting with and demoing the product
for series A investors. Management prioritizes new
feature launches ahead of fixing known bugs.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

42




The Research Lab team

Your team works for a government-contracted research lab.
Your engineering tasks encompass things like big-data
biology, rocket engine simulations, etc.

(4.) No bug database - Your company’s engineering developed
to supplement code written by a principal researcher without
software training, and not tracking bugs is one result of the lack
of formality. You frequently encounter buggy code but have
difficulty institutionally learning from any of these mistakes.

(7.) Your team uses specs which helps give direction to the
team’s efforts and avoid wasting time and (8.) things are pretty
quiet - you work in a lab, and there aren’t many distractions.

(11.) No coding in interviews - the company prioritizes other
technical skills, so while some of your coworkers are very
experienced engineers, others on your team (who write code)
are researchers without a lot of programming experience.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

43




The Big Non-Tech Company team

You work as part of the software team for a big
non)—tech company (like a hospital, a retail store chain,
etc.

You have quarterly deadlines for projects, and generally
follow a more traditional business schedule.

(3) No daily builds: you're on quarterly cycles so you
don'’t test the build on any regular schedule.

(7.) Your team works from a spec.
(8.) Has your own offices.

(10) No automated testing: Your company is not
software focused so you don't have dedicated testers -
but you do have stringent correctness requirements. As
a result you have to spend a lot of time manually testing
new features.

vk wnNe

10.
11.

12.

The Joel Test
Do you use source control?
Can you make a build in one step?
Do you do CI?
Do you have a bug database?
Do you fix bugs before writing new
code?
Do you have an up-to-date
schedule?
Do you have a spec?
Do programmers have quiet working
conditions?
Do you use the best tools money can
buy?
Do you do automated testing?
Do new candidates write code during
their interview?
Do you do hallway usability testing?

44




Wrapup

The Joel Test

Do you use source control?

Can you make a build in one step?

Do you use CI?

Do you have a bug database?

Do you fix bugs before writing new code?

Do you have an up-to-date schedule?

Do you have a spec?

Do programmers have quiet working

conditions?

o. Do you use the best tools money can
buy?

10. Do you do automated testing?

11. Do new candidates write code during
their interview?

12. Do you do hallway usability testing?

1. Are these tests still valid?
2. Which are most/least important?
3. Are some situational?

© N o v bk~ wWw N PR

45



