
CSE 403 Wrapup

Software lifecycle

• Determines the order for tasks:
– Requirements
– Architecture
– Design
– Implementation
– V&V: verification and validation
– Delivery
– Maintenance

• Goal: Perform work as early as practical
– Costly to discover information or make changes late
– Costly to make decisions too early
– Costly to do tasks multiple times

• In CSE 403: iterative process

Requirements

• “What”, not “how”
• Reflects user view, not developer view
• Understand the customer
– Preferably better than they understand themselves
– Seek transformational solutions (beware risk)

• Common technique: use case / scenario / story
• User interfaces
– High-level concepts & metaphors
– Low-level efficiency

• Get feedback early (example: paper prototype)

Architecture

• Divide and conquer (with simple interfaces)

• Modules for logical units of computation
– Minimize coupling, maximize cohesion

• Draw it as a picture (maybe UML)
– Key purpose: to communicate to others

• Interactions are part of the architecture too

Divide and conquer:
Modularity, abstraction, specifications

• No one person can understand all of a realistic
system

• Modularity permits focusing on just one part

• Abstraction enables ignoring detail

• Specifications and documentation formally
describe behavior

• Helps to understand/fix errors
– Or to avoid errors in the first place

Teamwork

• Dividing work
– By module in the architecture
– By task (PM, development, testing, …)

• Decisions
– Get understanding and buy-in

• Communication
– Specifications
– Deadlines
– Effective meetings

• Motivation, trust, and morale

Working in a team

• No one person can understand all of a realistic system
– Break the system into pieces
– Use modularity, abstraction, specification, documentation

• Different points of view bring value
• Work effectively with others

– Sometimes challenging, usually worth it
• Manage your resources effectively

– Time, people
– Engineering is about tradeoffs

• Both technical and management contributions are
critical

Process

Needed to keep your project under control:
• Specification
• Schedule (with measurable milestones)
• Source control
• Testing
• Automated build and test

– use tools: formatters, linters, style checkers, bug
finders, verification

• Bug database (and fix bugs first)

Testing & verification

• Goal: completely verify functionality
– In practice: heuristics improve completeness

• Much cheaper than discovering errors later
• Use more tools: test input minimization
• Testing tips:
– Be systematic

– Test early and often

– Tests are code too

– Involve users

– Can be fun!

Code reviews

• Another way to get feedback early
• Team members critique documents, code, etc.
• Greatly improves quality

• Identifies opportunities for refactoring
• Refactoring improves the design
– Design quality has many facets, depends on task

• Don’t forget design reviews (and UI, etc.)

Design

• Design of classes: similar considerations to
architecture

• Design patterns: the vocabulary of program
development
– Helps you design

– Helps you communicate

• Don’t reinvent the wheel!

Getting it right ahead of time

• Design: predicting implications

• Example: understanding interconnections

• Understanding the strengths and weaknesses

• If you don’t understand a design, you can’t use
it

• Documentation matters!

Documentation

• Everyone wants good documentation when using
a system
– Not everyone likes writing documentation

• What’s obvious to you probably isn’t obvious to
others

• Documentation is an important part of a user
interface (even if the user won’t read it)

• “An undocumented software system has zero
commercial value.” –John Chapin (CTO of Vanu,
Inc.)

Maintenance/evolution

• Maintenance accounts for most of the effort
(often 90% or more) spent on a successful
software system

• A good design enables the system to adapt to
new requirements while maintaining quality
– Think about the long term, but don’t prematurely

optimize

• Good documentation enables others to
understand the design

Intellectual property

● Patent
● Trade secret
● Trademark
● Copyright
● License
● Contracts

Interviewing

• Know your audience

• Communicate about yourself

• Be competent

• Be honest (about yourself, knowledge, etc.)

• You are evaluating them too

What you have learned in CSE 403;
what you will learn later

• Compare your skills today to a quarter ago
– Bottom line: Your project would be easy for you

• This is a measure of how much you have learned

• Your next project can be much more ambitious
• You will continue to learn
– Building interesting systems is never easy

• Like all worthwhile endeavors

– Practice is a good teacher
• Requires thoughtful introspection
• Don’t learn only by trial and error!

Course evaluation

• Please complete the course evaluation form
online
– Useful to future students

– Useful to course staff

– Useful to the department

Go forth and conquer

• System building is fun!
– It’s even more fun when you build them successfully

• Pay attention to what matters
– Use the techniques and tools of CSE 403 effectively

